\(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

Chứng minh p...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

\(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{z+t+y+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3.\left(x+y+t+z\right)}=\frac{1}{3}\)

12 tháng 2 2017

bạn tự làm tiếp đi nhé

23 tháng 11 2019

\(\Rightarrow\left\{{}\begin{matrix}A=4\\A=-4\end{matrix}\right.\)

Vậy biểu thức A luôn có giá trị nguyên (đpcm).

Chúc bạn học tốt!

15 tháng 2 2019

ĐK:y+z+t,z+t+x,t+x+z,x+z+y khác 0

x+y+t+z khác 0

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}\)

mà x+y+z+t khác 0 nên:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{1}{3}\Rightarrow x=y=z=t\)

\(\Rightarrow P=4\left(\text{nguyên}\right).\text{Vậy: P nguyên}\)

15 tháng 2 2019

@shitbo : Cơ sở đâu mà bạn cho rằng: x + y + z + t khác 0? Nếu x + y + z + t = 0 thì P = -1 ok?

2 tháng 11 2016

từ biểu thức đã cho , ta thấy các phân số bằng nhau . 

Có 2 dạng bằng nhau :

- cũng mẫu và tử 

- nhân hay chia mẫu và tử cho một số thì được phân số đã cho 

Nếu ta lấy cách 1 , cũng mẫu và tử thì có :

y = z = t = x 

Vậy có biểu thức phía dưới bằng :

1 + 1 + 1 + 1 = 4 

Vậy theo cách là các phân số này cùng có mẫu và tử giống nhau thì phân số này bằng 4

còn theo cách kia tớ không biết giải

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 8 2017

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

- Nếu \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

=> \(P=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=1+1+1+1=4\)

- Nếu \(x+y+z+t=0\Rightarrow x+y=-\left(z+t\right);y+z=-\left(t+x\right);z+t=-\left(x+y\right);t+x=-\left(y+z\right)\)

=> \(P=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}=\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P = 4 hoặc P = -4