
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)
pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)
Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)
Vậy nghiệm của hệ pt là(x;y)=(2;2)

ĐKXĐ:...
\(A=\left(\frac{\sqrt{x}\left(x-1\right)-x-2}{x-1}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{x-1}\right)\)
\(A=\left(\frac{x\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)=\frac{x\left(\sqrt{x}-1\right)}{x-4}-\frac{1}{\sqrt{x}-2}\)
Câu B vt lại đề đi
\(C=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(C=\frac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)
\(C=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)}{2}=\sqrt{x}-x\)

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

\(\hept{\begin{cases}y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}=\frac{x^4+1}{x^4-1}=a\\z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}=\frac{x^8+1}{x^8-1}\end{cases}}\)
\(\Rightarrow x^4=\frac{y+1}{y-1}\)
Thế vô z được
\(z=\frac{\left(\frac{y+1}{y-1}\right)^2+1}{\left(\frac{y+1}{y-1}\right)-1}=\frac{y^2+1}{2y}\)
Giờ thì thế \(y=\sqrt{2}+\sqrt{3}\)vô đi
ai làm đúng mik tịck đúng cho
Quy đồng:
\(\frac{\left(\right. x + 1 \left.\right)^{2} + \left(\right. x - 1 \left.\right)^{2}}{x^{2} - 1} = 4 \Rightarrow \frac{2 x^{2} + 2}{x^{2} - 1} = 4 \Rightarrow 2 x^{2} + 2 = 4 x^{2} - 4 \Rightarrow 2 x^{2} = 6 \Rightarrow x^{2} = 3 \Rightarrow x = \pm \sqrt{3}\)
Điều kiện xác định: \(x \neq 1 , - 1\)
Đáp số: \(x = \sqrt{3}\) hoặc \(x = - \sqrt{3}\)