Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x_1-1}{9}=\frac{x_2-2}{8}=\frac{x_3-3}{7}=...=\frac{x_9-9}{1}=\frac{x_1-1+x_2-2+...+x_9-9}{9+8+7+...+1}\)\(=\frac{\left(x_1+x_2+...+x_9\right)-45}{45}=\frac{90-45}{45}=\frac{45}{45}=1\)
Từ \(\frac{x_1-1}{9}=1\Rightarrow x_1=1\cdot9+1=10\)
Vậy \(x_1=10\)

Theo bài ra ta có : \(\dfrac{x1-1}{9}=\dfrac{x2-2}{8}=\dfrac{x3-3}{7}=......=\dfrac{x9-9}{1}\)
= \(\dfrac{\left(x1-1\right)+\left(x2-2\right)+\left(x3-3\right)+....+\left(x9-9\right)}{9+8+7+....+2+1}\)
=\(\dfrac{\left(x1+x2+x3+....+x9\right)-\left(1+2+3+...+9\right)}{9+8+7+...+1}\)
= \(\dfrac{90-45}{45}=\dfrac{45}{45}=1\)
=> \(x1=9.1+1=10\)
\(x2=8.1+2=10\)
\(x3=7.1+3=10\)
\(x4=6.1+4=10\)
\(x5=5.1+5=10\)
\(x6=4.1+6=10\)
\(x7=3.1+7=10\)
\(x8=2.1+8=10\)
\(x9=1.1+9=10\)
Vậy \(x1,x2,x3,x4,x5,...,x9\) tất cả đều bằng 10

Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{x_1-1}{10}=.....=\frac{x_{10}-10}{1}=\frac{\left(x_1+x_2+....+x_{10}\right)-\left(1+2+3+...+10\right)}{1+2+3+...+10}\)
\(=\frac{45}{55}=\frac{9}{11}\)
Giải ra ta được
\(x_1=\frac{101}{11}\)
\(x_2=\frac{103}{11}\)
........
\(x_{10}=\frac{119}{11}\)

1) ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}.\)
ADTCDTSBN
\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}=\frac{x^3+y^3-z^3}{8+27-64}=\frac{-29}{-29}=1\)
=>....
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)Và x3+y3-z3=-29
Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x^3}{8}=\frac{y^3}{17}=\frac{z^3}{65}=\frac{x^3+y^3-z^3}{8+17-64}=\frac{14}{39}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{14}{39}\Rightarrow x=\frac{28}{39}\\\frac{y}{3}=\frac{14}{39}\Rightarrow y=\frac{14}{13}\\\frac{x}{4}=\frac{14}{39}\Rightarrow z=\frac{56}{39}\end{cases}}\)
Vậy x =\(\frac{28}{39}\)
y = \(\frac{14}{13}\)
z = \(\frac{56}{39}\)

Ta có :
\(x_1< x_2< x_3< x_4\Rightarrow x_1+x_2+x_3+x_4< 4x_4\) (1)
\(x_5< x_6< x_7< x_8\Rightarrow x_5+x_6+x_7+x_8< 4x_8\)(2)
\(x_9< x_{10}< x_{11}< x_{12}\Rightarrow x_9+x_{10}+x_{11}+x_{12}< 4x_{12}\)(3)
\(x_{13}< x_{14}< x_{15}< x_{16}\Rightarrow x_{13}+x_{14}+x_{15}+x_{16}< 4x_{16}\)(4)
Cộng vế với vế của (1) ; (2) ; (3) ; (4) ta được :
\(x_1+x_2+x_3+....+x_{16}< 4x_4+4x_8+4x_{12}+4x_{16}=4\left(x_4+x_8+x_{12}+x_{16}\right)\)
\(\Rightarrow\frac{x_1+x_2+x_3+.....+x_{16}}{x_4+x_8+x_{12}+x_{16}}< 4\) (đpcm)