K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn thấy dễ nhưng tụi mình thấy khó

21 tháng 9

2k6 thì chả khó

5 tháng 9 2020

\(\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)

<=> \(xy+\sqrt{x^2+1}\sqrt{y^2+1}-1=-x\sqrt{x^2+1}-y\sqrt{y^2+1}\)--->Bình phương 2 vế:

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+1+2xy\sqrt{x^2+1}\sqrt{y^2+1}-2xy-2\sqrt{x^2+1}\sqrt{y^2+1}=\)

                                                                                                     \(x^2\left(x^2+1\right)+y^2\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}\)

<=>\(2\left(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\right)=\left(x^2-y^2\right)^2\ge0\)=>\(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\ge0\)

<=>\(1-xy\ge\sqrt{x^2+1}\sqrt{y^2+1}>0\)---> Bình phương 2 vế:

\(1+x^2y^2-2xy\ge\left(x^2+1\right)\left(y^2+1\right)\)<=>\(0\ge\left(x+y\right)^2\ge0\)<=>\(x+y=0\Leftrightarrow x=-y\Rightarrow x^2=y^2\)

--> Thay vào A---> \(A=\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)

23 tháng 9 2020

Ta có : \(S=\frac{20}{x^2+y^2}+\frac{11}{xy}\)

\(=\left(\frac{20}{x^2+y^2}+\frac{10}{xy}\right)+\frac{1}{xy}\)

\(=\left(\frac{20}{x^2+y^2}+\frac{20}{2xy}\right)+\frac{1}{xy}=20.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\)

Áp dụng BĐT Svacxo ta có : 

\(20\cdot\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\ge20\cdot\frac{4}{x^2+y^2+2xy}=20\cdot\frac{4}{\left(x+y\right)^2}\ge20\cdot\frac{4}{2^2}=20\)

Mặt khác có : \(0< xy\le\frac{\left(x+y\right)^2}{4}\le\frac{2^2}{4}=1\)

\(\Rightarrow\frac{1}{xy}\ge1\)

Do đó : \(S\ge20+1=21\)

Dấu "=" xảy ra khi \(x=y=1\)

23 tháng 9 2020

Ez right??

10 tháng 9 2020

Áp dụng bất đăng thức Holder, ta có

\(\Sigma_{cyc} a \sqrt[3]{b^2+c^2} = \Sigma_{cyc} \sqrt[3]{a.a^2.(b^2+c^2)} \le \sqrt[3]{( \Sigma_{cyc} a).(\Sigma_{cyc} a^2).[\Sigma_{cyc} (b^2+c^2)} \le \sqrt[3]{\sqrt{3\Sigma_{cyc} a^2}.(\Sigma_{cyc} a^2).(2\Sigma_{cyc} a^2}) \le 12\)

31 tháng 8 2020

Sửa : cho \(a_{1}, a_{2},..., a_{n}\in \mathbb{R}\)

31 tháng 8 2020

Ủa sao lệnh tex ko lên nhỉ ??

Sửa lại : \(a_1,a_2,....,a_n\inℝ\)

Bài ezzz =))))

\(VT=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)

Áp dụng bđt Bunhiacopski ta có

\(VT\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

28 tháng 9 2020

cách 2 . đặt ẩn phụ nhé bro

Đặt \(\left\{\frac{1}{a};\frac{1}{b};\frac{1}{c}\right\}\rightarrow\left\{x;y;z\right\}\)\(\Rightarrow xyz=1\), khi đó :

Bất đẳng thức cần chứng minh tương đương :\(\frac{1}{\left(\frac{1}{x}\right)^2\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\left(\frac{1}{y}\right)^2\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{\left(\frac{1}{z}\right)^2\left(\frac{1}{x}+\frac{1}{y}\right)}\ge\frac{3}{2}\)

\(< =>\frac{x^3yz}{y+z}+\frac{xy^3z}{z+x}+\frac{xyz^3}{x+y}\ge\frac{3}{2}< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)

Sử dụng bất đẳng thức AM-GM ta có : \(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{x+z}+\frac{x+z}{4}\right)+\left(\frac{z^2}{x+y}+\frac{x+y}{4}\right)\ge2\sqrt{\frac{x^2}{4}}+2\sqrt{\frac{y^2}{4}}+2\sqrt{\frac{z^2}{4}}=\frac{2x}{2}+\frac{2y}{2}+\frac{2z}{2}=x+y+z\)

Suy ra :\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{x+y+y+z+z+x}{4}\ge x+y+z< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)

Theo đánh giá của AM-GM thì : \(\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)Từ đó ta suy ra được :

 \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\ge\frac{3}{2}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)