
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1

+, |x-7|=x-7 khi x>=7 , ta có:
x-7+6-x=-7+6=-1 (1)
+, |x-7|=7-x khi x<=7 , ta có:
7-x+6-x=13-2x suy ra -2x<=-14 suy ra 13-2x <=13-14
Suy ra 13-2x =-1 (2)
Từ (1) và (2) suy ra GTNN của A là -1 khi và chỉ khi x-7=0 suy ra x=7
Nếu đúng thì tích cho mk nha
Vì x<= 7

Ta có: \(B=\frac{x+\frac{1}{2}}{x-\frac{2}{3}}\)
\(=\frac{x-\frac{2}{3}+\frac{7}{6}}{x-\frac{2}{3}}\)
\(=1+\frac{\frac{7}{6}}{x-\frac{2}{3}}\)
B lớn nhất \(\Leftrightarrow\frac{\frac{7}{6}}{x-\frac{2}{3}}\) lớn nhất \(\Leftrightarrow x-\frac{2}{3}\) dương và nhỏ nhất \(\Leftrightarrow x>\frac{2}{3}\) và x nhỏ nhất. Mà \(x\in Z\) (ở đây mình ghi thêm vào đề bài để cho đúng nha) nên x = 1
Khi đó \(B=\frac{9}{2}\)
Vậy \(Max_B=\frac{9}{2}\Leftrightarrow x=1\)

\(E=8-6.\left|x-7\right|\)
Có: \(\left|x-7\right|\ge0\Rightarrow6.\left|x-7\right|\ge0\)
\(\Rightarrow8-6.\left|x-7\right|\le8\)
Dấu '=' xảy ra khi: \(x-7=0\Rightarrow x=7\)
Vậy: \(Max_E=8\) tại \(x=7\)
\(D=\frac{1}{2}.\left|x-1\right|+3\)
Có: \(\left|x-1\right|\ge0\Rightarrow\frac{1}{2}\left|x-1\right|\ge0\)
\(\Rightarrow\frac{1}{2}\left|x-1\right|+3\ge0\)
Vậy không tồn tại x để D đạt GTNN
GTLN là -100
tick mình