Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1,2 Biểu thức không phân tích được thành nhân tử.
3.
$x^2z+x^2yz-x^2z^2-xyz^2=xz(x+xy-xz-yz)$

a. x2 + 4xy + 4y2 - 2x - 4y
= (x + 2y)2 - (2x + 4y)
= (x + 2y)2 - 2(x + 2y)
= (x + 2y)(x + 2y - 2)
= (x + 2y)[x + 2(y-1)]
b. x2 - 8x + 7
= x2 - x - 7x + 7
= x(x - 1) - (7x - 7)
= x(x - 1) - 7(x - 1)
= (x - 7)(x - 1)
c. xy - xz - y + z
= x(y - z) - (y - z)
= (x - 1)(y - z)
d. x3 + 4x2 + 4x
= x3 + 4x2 + 4x + x2 - x2
= x2(x + 1) + 4x(x + 1) - x2
= (x2 + 4x - x2)(x + 1)
= 4x(x + 1)

a, 5x2 - 45x = 5x(x - 9)
b, 3x3y - 6x2y - 3xy3 - 6axy2 - 3a2xy + 3xy
= 3xy(x2 - 2x - y2 - 2ay - a2 + 1)
= 3xy[ (x2 - 2x + 1) - (a2 + 2ay + y2) ]
= 3xy[ (x - 1)2 - (a + y)2 ]
= 3xy(x - 1 + a + y)(x - 1 - a - y)
f, 3xy2 - 12xy + 12x
= 3x(y2 - 4y + 4)
= 3x(y - 2)2
g, 2x2 - 8x + 8
= 2(x2 - 4x + 4)
= 2(x - 2)2
h, 5x3 + 10x2y + 5xy2
= 5x( x2 + 2xy + y2 )
= 5x(x + y)2
k, x2 + 4x - 2xy - 4y + y2
= (x2 - 2xy + y2) + (4x - 4y)
= (x - y)2 + 4(x - y)
= (x - y)(x - y + 4)
i, x3 + ax2 - 4a - 4x
= (x3 - 4x) + (ax2 - 4a)
= x(x2 - 4) + a(x2 - 4)
= (x + a)(x2 - 4)
= (x + a)(x + 2)(x - 2)
Chúc bạn học tốt !

13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.

Bài 1:
\(x^2+y^2-2x-4y+5=0\)
\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)
Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$
$\Rightarrow x=1; y=2$
Vậy...........
Bài 2:
Ta có:
\(a(a-b)+b(b-c)+c(c-a)=0\)
\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Lập luận tương tự bài 1, ta suy ra :
\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)
Khi đó, thay $b=c=a$ ta có:
\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)
\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)
\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)
Vậy $P_{\min}=\frac{17}{4}$
Giá trị này đạt được tại $b=c=a=\frac{1}{2}$

\(a,2x^2-4xy+2y^2-8\)
\(=2\left(x^2-2xy+y^2-4\right)\)
\(=2\left[\left(x-y\right)^2-2^2\right]\)
\(=2\left(x-y-2\right)\left(x-y+2\right)\)
\(b,x^2+4y^2-z^2-t^2-4xy-2tz\)
\(=\left(x^2-4xy+4y^2\right)-\left(z^2+2tz+t^2\right)\)
\(=\left(x-2y\right)^2-\left(z+t\right)^2\)
\(=\left(x-2y-z-t\right)\left(x-2y+z+t\right)\)

a) \(A=x^2-4y^2+x-2y\)
\(=\left(x-2y\right)\left(x+2y\right)+\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y+1\right)\)
Thay vào
b) tương tự
Tại x=1 ; y=2 thay vào BT ta có
A= \(1-4.2^2+1-2.2=\)-18
ý b) cũng thay v thoy
\(D=x^4+4xy+4y^2-z^2+2xt-t^2\)
\(=\left[x^2+2.x.2y+\left(2y\right)^2\right]-\left(z^2-2.z.t+t^2\right)\)
\(=\left(x+2y\right)^2-\left(z-t\right)^2\)
\(=\left(x+2y-z+t\right)\left(x+2y+z-t\right)\)
Với \(x=10;y=40;z=30;t=20\):
\(D=\left(10+2.40-30+20\right)\left(10+2.40+30-20\right)\)
\(=\left(10+80-10\right)\left(10+80+10\right)\)
\(=80.100=8000\)
Vậy \(D=8000\)