Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.
Vì AB//CD, ta có góc ACD = góc BAD.
Vậy số đo góc A là 120 độ.
b) Gọi góc BCD là x độ.
Theo giả thiết, góc B phần góc D = 4/5, ta có:
góc B = (4/5) * góc D
= (4/5) * 60
= 48 độ.
Vì AB//CD, ta có góc BCD = góc BAD.
Vậy góc BAD = góc BCD = x độ.
Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.
Ta có: góc A + góc B + góc C + góc D = 360 độ.
Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:
120 + 48 + góc C + 60 = 360
góc C = 360 - 120 - 48 - 60 = 132 độ.
Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.
* Ib = bài 4

1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ

bài 5; tính số đo các góc của tứ giác ABCD biết góc A = 60 độ; góc B = 90 độ. Tính số đo của góc C và góc D:
a, góc C = 100 độ; góc D = 60 độ;
góc A
C, góc B = 80 độ; góc C = 60 độ; 5 góc A = 6 góc D

a.
Tứ giác ABCD có:
A + B + C + D = 3600
900 + 400 + 700 + D = 3600
D = 3600 - 2000
D = 1600
b.
D là trung điểm của AB
E là trung điểm của AC
=> DE là đường trung bình của tam giác ABC
=> DE = BC/2
=> BC = 2DE = 2 . 5 = 10 (cm)
pạn phương an làm đúng r ạ pạn hà vy nên học chăm hơn pài này dễ mà
Định nghĩa về tứ giác lồi: Tứ giác lồi là một hình gấp khúc vòng tròn và khép kín
Đặt \(\hat{A}=a;\hat{B}=b;\hat{C}=c;\hat{D}=d\)
Xét tứ giác ABCD có \(\hat{A}+\hat{B}+\hat{C}+\hat{D}=360^0\)
=>\(a+b+c+d=360^0\)
ta có: \(\hat{A}:\hat{B}:\hat{C}:\hat{D}=4:3:2:1\)
=>a:b:c:d=4:3:2:1
=>\(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}=\frac{d}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}=\frac{d}{1}=\frac{a+b+c+d}{4+3+2+1}=\frac{360^0}{10}=36^0\)
=>\(d=36^0\cdot1=36^0\)
=>\(\hat{D}=36^0\)
=>Chọn A