K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: \(\hat{xAB}+\hat{yBA}=45^0+135^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên Ax//By

b: Gọi BM là tia đối của tia By

Khi đó, ta có: \(\hat{MBA}+\hat{yBA}=180^0\) (hai góc kề bù)

=>\(\hat{MBA}=180^0-135^0=45^0\)

Ta có: tia BM nằm giữa hai tia BA và BC

=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)

=>\(\hat{CBM}=75^0-45^0=30^0\)

Ta có: \(\hat{MBC}=\hat{BCz}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên By//Cz

S
3 tháng 9

kẻ RH sao cho H đối diện với R qua O

ta có: ∠POH = 180⁰ - ∠ROP = 180⁰ - 110⁰ = 70⁰

∠NOH = 180⁰ - ∠RON = 180⁰ - 130⁰ = 50⁰

∠NOP = ∠POH + ∠NOH = 70⁰ + 50⁰ = 120⁰

⇒ ∠NOP = ∠OPQ = 120⁰

mà 2 góc này ở vị trí so le trong

⇒ PQ // NQ

S
3 tháng 9

a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)

=>\(\hat{tKm}=180^0-150^0=30^0\)

Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên Nz//Km

b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)

=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)

Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ky//Mn

a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)

=>\(\hat{tKm}=180^0-150^0=30^0\)

Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên Nz//Km

b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)

=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)

Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ky//Mn

a: Ta có: \(\hat{CAD}=\hat{ADE}\left(=55^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//DE

b: ta có: \(\hat{AFB}=\hat{ADC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên BE//CD

\(\frac{x}{10}=\frac{y}{5}\)

=>\(\frac{x}{2}=\frac{y}{1}\)

=>\(\frac{x}{4}=\frac{y}{2}\)

\(\frac{y}{2}=\frac{z}{3}\)

nên \(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)

mà 2x-3y+4z=350

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+4z}{2\cdot4-3\cdot2+4\cdot3}=\frac{350}{14}=25\)

=>\(\begin{cases}x=25\cdot4=100\\ y=25\cdot2=50\\ z=25\cdot3=75\end{cases}\)

Bài 4:

Ta có: \(\hat{M_2}=\hat{N_2}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên a//b

Bài 3:

a//b

a⊥BA

Do đó: b⊥BA

=>\(\hat{ABC}=90^0\)

AD//BC

=>\(\hat{ADC}+\hat{DCB}=180^0\)

=>\(\hat{ADC}=180^0-110^0=70^0\)

Bài 2:

a: \(-\frac35+\frac{-2}{5}:x=\frac13\)

=>\(-\frac25:x=\frac13+\frac35=\frac{5}{15}+\frac{9}{15}=\frac{14}{15}\)

=>\(x=-\frac25:\frac{14}{15}=-\frac25\cdot\frac{15}{14}=-\frac37\)

b: \(0,2+\left|x-1,3\right|=1,5\)

=>|x-1,3|=1,5-0,2=1,3

=>\(\left[\begin{array}{l}x-1,3=1,3\\ x-1,3=-1,3\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2,6\\ x=0\end{array}\right.\)

c: \(\left(\frac37-2x\right)^2=\frac49\)

=>\(\left[\begin{array}{l}\frac37-2x=\frac23\\ \frac37-2x=-\frac23\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=\frac37-\frac23=\frac{9}{21}-\frac{14}{21}=-\frac{5}{21}\\ 2x=\frac37+\frac23=\frac{9}{21}+\frac{14}{21}=\frac{23}{21}\end{array}\right.\)

=>\(\left[\begin{array}{l}x=-\frac{5}{21}:2=-\frac{5}{42}\\ x=\frac{23}{21}:2=\frac{23}{42}\end{array}\right.\)

d: \(2^{x}+2^{x+3}=144\)

=>\(2^{x}+2^{x}\cdot2^3=144\)

=>\(2^{x}\left(1+2^3\right)=144\)

=>\(2^{x}\cdot9=144\)

=>\(2^{x}=\frac{144}{9}=16=2^4\)

=>x=4

Bài 1:

a: \(\frac{14}{57}+\frac{29}{23}-\frac{71}{57}+\frac{-6}{23}\)

\(=\left(\frac{14}{57}-\frac{71}{57}\right)+\left(\frac{29}{23}-\frac{6}{23}\right)\)

\(=\frac{-57}{57}+\frac{23}{23}=-1+1=0\)

b: \(\frac{5}{12}\cdot\left(-\frac34\right)+\frac{7}{12}\left(-\frac34\right)\)

\(=-\frac34\left(\frac{5}{12}+\frac{7}{12}\right)=-\frac34\cdot\frac{12}{12}=-\frac34\)

d: \(\left(-\frac{3}{11}:\frac{5}{22}\right)\cdot\left(-\frac{15}{3}:\frac{26}{3}\right)\)

\(=-\frac{3}{11}\cdot\frac{22}{5}\cdot\left(_{}-5\right)\cdot\frac{3}{26}=-\frac35\cdot\left(-5\right)\cdot2\cdot\frac{3}{26}=3\cdot2\cdot\frac{3}{26}=\frac{9}{13}\)

f: \(\frac{9^{15}\cdot8^{11}}{3^{29}\cdot16^8}=\frac{3^{30}}{3^{29}}\cdot\frac{2^{33}}{2^{32}}=3\cdot2=6\)