Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi:
- \(x\) là số tiền ông Hùng gửi vào ngân hàng 1 (lãi suất 6%/năm),
- \(y\) là số tiền ông Hùng gửi vào ngân hàng 2 (lãi suất 8%/năm).
Ta có 2 điều kiện:
- Tổng số tiền gửi là 20 triệu đồng:
\(x + y = 20 \textrm{ } 000 \textrm{ } 000 \left(\right. 1 \left.\right)\)
- Tổng số tiền lãi sau 1 năm là 1.380.000 đồng:
\(0.06 x + 0.08 y = 1 \textrm{ } 380 \textrm{ } 000 \left(\right. 2 \left.\right)\)
Bước 1: Giải hệ phương trình
Từ (1):
\(y = 20 \textrm{ } 000 \textrm{ } 000 - x\)
Thế vào (2):
\(0.06 x + 0.08 \left(\right. 20 \textrm{ } 000 \textrm{ } 000 - x \left.\right) = 1 \textrm{ } 380 \textrm{ } 000\) 0.06x + 1\,600\,000 - 0.08x = 1\,380\,000 \
Gọi số tiền ông Hùng gửi vào:
- Ngân hàng 1 là: x (triệu đồng),
- Ngân hàng 2 là: 20 - x (triệu đồng) (vì tổng cộng là 20 triệu).
Lãi sau 1 năm:
- Ngân hàng 1: \(x \times 6 \% = 0.06 x\) (triệu đồng)
- Ngân hàng 2: \(\left(\right. 20 - x \left.\right) \times 8 \% = 0.08 \left(\right. 20 - x \left.\right)\) (triệu đồng)
Tổng lãi sau 1 năm là: 1.38 triệu đồng (tức 1380 nghìn đồng)
Lập phương trình:
\(0.06 x + 0.08 \left(\right. 20 - x \left.\right) = 1.38\)
Giải phương trình:
\(0.06 x + 1.6 - 0.08 x = 1.38 - 0.02 x + 1.6 = 1.38 - 0.02 x = 1.38 - 1.6 = - 0.22 x = \frac{- 0.22}{- 0.02} = 11\)
Vậy:
- Gửi ngân hàng 1: 11 triệu đồng
- Gửi ngân hàng 2: 9 triệu đồng

Bạn vào đây xem thử
Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

Lời giải:
Đặt \(\frac{1}{x-1}=a; \frac{1}{y-1}=b\) thì HPT trở thành:
\(\left\{\begin{matrix} a-3b=-1\\ 2a+4b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{2}\\ b=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x-1}=\frac{1}{2}\\ \frac{1}{y-1}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=y=3\)
Vậy HPT có nghiệm $(x,y)=(3,3)$