Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 3:
a: \(\left(2x+1\right)\left(x^2+2\right)=0\)
mà \(x^2+2\ge2>0\forall x\)
nên 2x+1=0
=>2x=-1
=>\(x=-\frac12\)
b: \(\left(x^2+4\right)\left(7x-3\right)=0\)
mà \(x^2+4\ge4>0\forall x\)
nên 7x-3=0
=>7x=3
=>\(x=\frac37\)
c: \(\left(x^2+x+1\right)\left(6-2x\right)=0\)
mà \(x^2+x+1=x^2+x+\frac14+\frac34=\left(x+\frac12\right)^2+\frac34\ge\frac34>0\forall x\)
nên 6-2x=0
=>2x=6
=>x=3
d: \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
mà \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)
nên 8x-4=0
=>8x=4
=>\(x=\frac48=\frac12\)
Bài 4:
a: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)
=>(x-2)(3x+5)=(x-2)(2x+2)
=>(x-2)(3x+5-2x-2)=0
=>(x-2)(x+3)=0
=>\(\left[\begin{array}{l}x-2=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ x=-3\end{array}\right.\)
b: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
=>(2x+5)(x-4)-(x-5)(4-x)=0
=>(2x+5)(x-4)+(x-5)(x-4)=0
=>(x-4)(2x+5+x-5)=0
=>3x(x-4)=0
=>x(x-4)=0
=>\(\left[\begin{array}{l}x=0\\ x-4=0\end{array}\right.=>\left[\begin{array}{l}x=0\\ x=4\end{array}\right.\)
c: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
=>(3x+1)(3x-1)=(3x+1)(2x-3)
=>(3x+1)(3x-1)-(3x+1)(2x-3)=0
=>(3x+1)(3x-1-2x+3)=0
=>(3x+1)(x+2)=0
=>\(\left[\begin{array}{l}3x+1=0\\ x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac13\\ x=-2\end{array}\right.\)
d: \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
=>\(2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)
=>\(\left(3x+1\right)\left(6x+2-x+2\right)=0\)
=>(3x+1)(5x+4)=0
=>\(\left[\begin{array}{l}3x+1=0\\ 5x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac13\\ x=-\frac45\end{array}\right.\)
e: \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)
=>\(27x^2\left(x+3\right)-12x\left(x+3\right)=0\)
=>3x(x+3)(9x-4)=0
=>x(x+3)(9x-4)=0
=>\(\left[\begin{array}{l}x=0\\ x+3=0\\ 9x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-3\\ x=\frac49\end{array}\right.\)
f: \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)
=>\(\left(4x-1\right)^2=\left(4x+12\right)\left(4x-1\right)\)
=>(4x+12)(4x-1)-\(\left(4x-1\right)^2=0\)
=>(4x-1)(4x+12-4x+1)=0
=>13(4x-1)=0
=>4x-1=0
=>4x=1
=>\(x=\frac14\)

Coi số 4 và số 5 là một số, ta sẽ lập số tự nhiên có 4 chữ số khác nhau mà trong đó có 1 số gồm 2 chữ số là 4 và 5.
Số cách chọn 3 chữ số khác nhau còn lại là: \(C_7^3=35\) (cách)
Số cách xếp 4 số vào 4 vị trí là 4!=24(cách)
Số cách xếp hai chữ số 4 và 5 là 2(cách)
Tổng số cách là: \(35\cdot24\cdot2=1680\) (cách)


Bài 4:
a: ΔCAB vuông tại C
=>\(\hat{CAB}+\hat{CBA}=90^0\)
=>\(\hat{CBA}=90^0-70^0=20^0\)
Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)
=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)
ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=AB^2-CA^2\)
=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)
b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)
Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)
Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)
Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)
\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)
Bài 5:
Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B
nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)
=>\(\hat{BMA}=39^0-18^0=21^0\)
Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)
=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)
=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)
Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)
=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)
=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

Bài 1:
a: \(A=\sqrt{6+2\sqrt5}-\sqrt{6-2\sqrt5}\)
\(=\sqrt{\left(\sqrt5+1\right)^2}-\sqrt{\left(\sqrt5-1\right)^2}\)
\(=\sqrt5+1-\left(\sqrt5-1\right)=\sqrt5+1-\sqrt5+1=2\)
b: \(B=a+1-\sqrt{a^2-2a+1}\)
\(=a+1-\sqrt{\left(a-1\right)^2}\)
=a+1-|a-1|
=a+1-(1-a)(Vì a<1)
=a+1-1+a=2a
Bài 2:
a: \(2x^2-8x+33\)
\(=2x^2-8x+8+25=2\left(x^2-4x+4\right)+25=2\left(x-2\right)^2+25\ge25\forall x\)
=>\(\sqrt{2x^2-8x+33}\ge\sqrt{25}=5\forall x\)
=>\(A=\sqrt{2x^2-8x+33}+3\ge5+3=8\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=\sqrt{x^2-8x+18}-1\)
\(=\sqrt{x^2-8x+16+2}-1\)
\(=\sqrt{\left(x-4\right)^2+2}-1\ge\sqrt2-1\forall x\)
Dấu '=' xảy ra khi x-4=0
=>x=4
c: \(C=\sqrt{x^2+y^2-2xy+2x-2y+10}+2y^2-8y+2020\)
\(=\sqrt{\left(x-y\right)^2+2\left(x-y\right)+1+9}+2y^2-8y+8+2012\)
\(=\sqrt{\left(x-y+1\right)^2+9}+2\left(y-2\right)^2+2012\ge2012+3=2015\forall x,y\)
Dấu '=' xảy ra khi y-2=0 và x-y+1=0
=>y=2 và x=y-1=2-1=1


1.
a. Em tự giải
b.
\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)
Để \(x+y=7\Rightarrow m+1+2m-3=7\)
\(\Rightarrow3m=9\Rightarrow m=3\)
2.
a. Em tự giải
b.
Phương trình có 2 nghiệm khi:
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
Ta có:
\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)
\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)
\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)
Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)
\(\Rightarrow P\ge40\)
Vậy \(P_{min}=40\) khi \(m=-3\)
(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)
Câu 61:
a: \(B=\dfrac{3}{\sqrt{x}-2}+\dfrac{4}{\sqrt{x}+2}-\dfrac{12}{x-4}\)
\(=\dfrac{3}{\sqrt{x}-2}+\dfrac{4}{\sqrt{x}+2}-\dfrac{12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\left(\sqrt{x}+2\right)+4\left(\sqrt{x}-2\right)-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3\sqrt{x}+6+4\sqrt{x}-8-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{7\sqrt{x}-14}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{7\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{7}{\sqrt{x}+2}\)
b: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{1-x}\)
\(=\dfrac{\left(\sqrt{x}+1\right)}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Câu 60
Khi a=2 thì hệ phương trình sẽ trở thành:
\(\left\{{}\begin{matrix}\left(2^2-1\right)x+y=3\\2x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=2x-7=2\cdot2-7=-3\end{matrix}\right.\)
Dạ Em cảm ơn ạ