
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Tổng số đo các góc của một đa giác n cạnh = \((7-2).180^0\) = \(900^0\)
b)Số đo mỗi góc của ngũ giác đều là : \(\frac{(5-2).180^0}{5}\)= \(108^0\)
Số đo mỗi góc của lục giác đều là \(\frac{(6-2).180^0}{6}\)= \(120^0\)

câu 1, A
câu 2, A
câu 3, C
câu 4, B
câu cuối,
1, hai
2, ngũ
3, lục
4, 7
5, 8
9,9
10, thập
Câu 1: A. 2
Câu 2: A. Tam giác có 2 cạnh bằng nhau
Câu 3: C. 4 x 4 x 4
Câu 4: B. 6
Câu 5:
Nhất là một
Nhị là hai
Tam là ba
Tứ là bốn
Ngũ là năm
Lục là sáu
Thất là bảy
Bát là tám
Cửu là chín
Thập là mười

Bài 1:
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
DO đó: F là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
hay BEFC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEFC là hình thang cân

Định lý 2 (phát biểu)
a) Nếu tứ giác có hai cặp cạnh đối bằng nhau (theo độ dài) thì tứ giác đó là hình bình hành.
b) Nếu tứ giác có **một cặp cạnh đối vừa song song vừa bằng nhau thì tứ giác đó là hình bình hành.
Ký hiệu chung cho cả hai phần
Gọi tứ giác \(A B C D\) theo thứ tự (cạnh \(A B , B C , C D , D A\)).
Gọi \(A C\) là một đường chéo.
Cách vẽ hình minh họa (vẽ tay):
- Vẽ tứ giác bất kì \(A B C D\) (không bắt buộc là hình bình hành).
- Vẽ đường chéo \(A C\).
- Đánh dấu các cạnh bằng nhau hoặc song song theo đề bài (dấu “=” cho bằng, mũi tên song song cho song song).
- Ta sẽ dùng hai tam giác \(\triangle A B C\) và \(\triangle C D A\) để so sánh.
Phần (a) — Chứng minh:
Giả thiết: \(A B = C D\) và \(B C = A D\).
Phải chứng minh: \(A B \parallel C D\) và \(B C \parallel A D\) (tức là \(A B C D\) là hình bình hành).
Chứng minh:
- Xét hai tam giác \(\triangle A B C\) và \(\triangle C D A\).
- \(A B = C D\) (giả thiết).
- \(B C = A D\) (giả thiết).
- \(A C\) là cạnh chung.
Vậy theo tiêu chí SSS (ba cạnh bằng nhau), ta có \(\triangle A B C \cong \triangle C D A\).
- Từ đồng dư hai tam giác, các góc tương ứng bằng nhau. Cụ thể:
- \(\angle B A C = \angle D C A\).
- \(\angle B C A = \angle D A C\).
- Quan sát: \(\angle B A C\) là góc giữa đường thẳng \(B A\) và \(A C\); \(\angle D C A\) là góc giữa đường thẳng \(D C\) và \(C A\). Vì hai góc ấy bằng nhau và cùng liên quan đến đường thẳng \(A C\), suy ra đường thẳng \(B A\) song song với đường thẳng \(D C\), tức \(A B \parallel C D\).
Tương tự, từ \(\angle B C A = \angle D A C\) suy ra \(B C \parallel A D\). - Vậy hai cặp cạnh đối của \(A B C D\) song song nhau nên \(A B C D\) là hình bình hành. □
Phần (b) — Chứng minh:
Giả thiết: Một cặp cạnh đối (ví dụ \(A B\) và \(C D\)) song song và bằng nhau (tức \(A B \parallel C D\) và \(A B = C D\)).
Phải chứng minh: \(A B C D\) là hình bình hành (tức còn cặp cạnh kia cũng song song).
Chứng minh:
- Xét hai tam giác \(\triangle A B C\) và \(\triangle C D A\) như trên.
- \(A B = C D\) (giả thiết).
- \(A C\) là cạnh chung.
- Vì \(A B \parallel C D\), nên góc giữa \(B A\) và \(A C\) bằng góc giữa \(D C\) và \(C A\). Tức \(\angle B A C = \angle D C A\).
- Ta có trong hai tam giác \(\triangle A B C\) và \(\triangle C D A\):
- Một cạnh bằng (\(A B = C D\)),
- Một cạnh chung (\(A C\)),
- Góc giữa hai cạnh này bằng (\(\angle B A C = \angle D C A\)).
Do đó theo tiêu chí SAS (cạnh-góc-cạnh), \(\triangle A B C \cong \triangle C D A\).
- Từ đồng dư suy ra \(B C = A D\) (các cạnh tương ứng bằng nhau) và đồng thời các góc tương ứng bằng nhau. Do đó \(\angle B C A = \angle D A C\), suy ra \(B C \parallel A D\).
- Vì \(A B \parallel C D\) đã có và giờ \(B C \parallel A D\) vừa chứng minh, nên \(A B C D\) là hình bình hành. □
Ghi chú/trực quan hóa
- Cả hai chứng minh đều dùng đồng dư tam giác (SSS hoặc SAS) qua đường chéo \(A C\).
- Kết luận: chứng minh ra hai cạnh tương ứng song song → định nghĩa hình bình hành được thỏa mãn.
- Khi vẽ hãy:
- Vẽ \(A B C D\) và đường chéo \(A C\).
- Đánh dấu các cạnh bằng nhau (dấu “=”) hoặc mũi tên song song (nếu có song song).
- Chú thích tam giác \(\triangle A B C\) và \(\triangle C D A\) để thấy rõ các cạnh tương ứng.
a:
Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
b:
Xét ΔABD và ΔCDB có
AB=CD
\(\hat{ABD}=\hat{CDB}\) (hai góc so le trong, AB//CD)
BD chung
Do đó: ΔABD=ΔCDB
=>\(\hat{ADB}=\hat{CBD}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
Gọi số cạnh của đa giác là n (n ≥ 3; n Є N)
Số đường chéo của đa giác là
n ( n − 3 ) 2
Theo đề bài ta có
n ( n − 3 ) 2 = n ó n2 – 3n = 2n
ó n2 – 5n = 0ó n (n – 5) = 0
ó n = 0 ( k t m ) n = 5 ( t m )
Vậy đa giác thỏa mãn đề bài là ngũ giác
Đáp án cần chọn là: B