
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)
nên \(\hat{C}\) ≃37 độ
ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
=>\(\hat{B}=90^0-37^0=53^0\)
b: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\) (2)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
\(AE\cdot AB=AH^2\)
=>\(AE=\frac{AH^2}{AB}\)
\(AF\cdot AC=AH^2\)
=>\(AF=\frac{AH^2}{AC}\)
Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)
nên \(\hat{C}\) ≃37 độ
ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
=>\(\hat{B}=90^0-37^0=53^0\)
b: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\) (2)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
\(AE\cdot AB=AH^2\)
=>\(AE=\frac{AH^2}{AB}\)
\(AF\cdot AC=AH^2\)
=>\(AF=\frac{AH^2}{AC}\)
Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

a, Ta có tam giác \(A B C\) nhọn, kẻ:
- \(B D \bot A B\)
- \(C D \bot A C\)
=> Các góc tại \(B\) và \(C\) đều là góc vuông.
Ta xét tứ giác \(A B D C\):
- \(\angle A B D = 90^{\circ}\) (do \(B D \bot A B\))
- \(\angle A C D = 90^{\circ}\) (do \(C D \bot A C\))
Suy ra:
\(\angle A B D + \angle A C D = 180^{\circ}\)
Mà tổng góc trong tứ giác bằng \(360^{\circ}\), nên:
\(\angle B A D + \angle B C D + 180^{\circ} = 360^{\circ} \Rightarrow \angle B A D + \angle B C D = 180^{\circ}\)
Mà \(\angle B A D\) chính là góc tại \(A\) của tam giác \(A B C\), ký hiệu là \(\angle A\),
\(\angle B C D\) chính là góc tại \(D\) trong tứ giác (ký hiệu là \(\angle D\)).
⇒ \(\Rightarrow \angle D + \angle A = 180^{\circ}\)
b, * Chứng minh \(Q J = B D\)
Vì \(I\) là trung điểm của \(P Q\) và \(B J\), nên:
- \(I P = I Q\) (trung điểm \(P Q\))
- \(I B = I J\) (trung điểm \(B J\))
Xét hai tam giác \(I P B\) và \(I Q J\):
- \(I P = I Q\) (gt)
- \(I B = I J\) (gt)
- \(\angle P I B = \angle Q I J\) (đối đỉnh)
⇒ Tam giác \(I P B\) ≅ tam giác \(Q I J\) (cạnh – cạnh – góc xen giữa)
Suy ra:
\(P B = Q J\)
Nhưng \(P B = A B - A P = A B - \left(\right. A B - B P \left.\right) = B P\), mà \(B P = B D\) (gt)
⇒ \(Q J = P B = B P = B D \Rightarrow \boxed{Q J = B D}\)
*Chứng minh \(\angle A Q J + \angle D = 180^{\circ}\)
Ta đã biết ở phần a): \(\angle A + \angle D = 180^{\circ} .\)
Ta sẽ chứng minh \(\angle A Q J = \angle A\)
Xét hai tam giác:
- Tam giác \(A B P\): có \(B P = B D\) (gt)
- Tam giác \(A C Q\): có \(C Q = C D\) (gt)
Do \(B D \bot A B\), \(C D \bot A C\) ⇒ \(B D\) là đường cao tam giác \(A B C\), tương tự \(C D\) cũng là đường cao.
Suy ra tam giác \(A B P\) vuông tại \(B\), tam giác \(A C Q\) vuông tại \(C\). Hai điểm \(P , Q\) được lấy đối xứng vai trò như nhau theo hai cạnh của tam giác \(A B C\).
Lại có \(Q J = B D = B P\) (ở trên vừa chứng minh), do đó tam giác \(A Q J\) đồng dạng với tam giác \(A B C\) ⇒
\(\angle A Q J = \angle A .\)
Vậy:
\(\angle A Q J + \angle D = \angle A + \angle D = 180^{\circ} . \textrm{ }\textrm{ } \textrm{ } (đ\text{pcm})\)


Bài 3:
a: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
Xét ΔBOD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBOD cân tại B
=>BO=BD
ma BO=OD
nên BO=BD=OD
=>ΔBOD đều
=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>\(\hat{BAD}+\hat{BDA}=90^0\)
=>\(\hat{BAD}=90^0-60^0=30^0\)
Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
=>AB=AC
ΔAIB=ΔAIC
=>\(\hat{IAB}=\hat{IAC}\)
=>AI là phân giác của góc BAC
=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)
Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)
nên ΔABC đều
b: ΔOBD đều
=>BD=OB=R
ΔABD vuông tại B
=>\(BA^2+BD^2=AD^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt3\)
=>\(BA=AC=BC=R\sqrt3\)

a: Diện tích ban đầu là \(8\cdot20=160\left(m^2\right)\)
Độ dài cạnh góc vuông thứ nhất của phần bị thu hồi là
20-2x(m)
Độ dài cạnh góc vuông thứ hai của phần bị thu hồi là:
8-x(m)
Diện tích phần bị thu hồi là:
\(T=\frac12\left(20-2x\right)\left(8-x\right)=\frac12\left(2x-20\right)\left(x-8\right)=\left(x-10\right)\left(x-8\right)\left(m^2\right)\)
b: Diện tích đất bị thu hồi là 455:13=35(m)
=>(x-10)(x-8)=35
=>\(x^2-18x+80-35=0\)
=>\(x^2-18x+45=0\)
=>(x-3)(x-15)=0
=>\(\left[\begin{array}{l}x-3=0\\ x-15=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=15\left(loại\right)\end{array}\right.\)
Vậy: x=3

Bài 4:
a: Chiều cao của tòa nhà là:
\(25\cdot\tan36\) ≃18,2(m)
b: Khoảng cách từ chỗ anh ta đứng đến tòa nhà khi đó là:
18,2:tan32≃29,1(m)
Bài 3:
Kẻ BH⊥AC tại H
Xét ΔAHB vuông tại H có \(\sin A=\frac{BH}{AB}\)
=>\(BH=AB\cdot\sin A\)
Xét ΔABC có BH là đường cao
nên \(S_{ABC}=\frac12\cdot BH\cdot AC=\frac12\cdot AB\cdot AC\cdot\sin BAC\)
Bài 2:
a: \(A=\frac{\sin45^0\cdot cos45^0}{\cot60^0}=\frac{\frac{\sqrt2}{2}\cdot\frac{\sqrt2}{2}}{\tan30}=\frac12:\frac{\sqrt3}{3}=\frac12\cdot\frac{3}{\sqrt3}=\frac{3}{2\sqrt3}=\frac{\sqrt3}{2}\)
b: \(B=\frac{\sin70^0\cdot\tan40^0}{cos20^0\cdot\cot50^0}=\frac{\sin70^0\cdot\tan40^0}{\sin70^0\cdot\tan40^0}=1\)
Bài 1:
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=BC^2-AC^2=10^2-8^2=36=6^2\)
=>AB=6(cm)
Xét ΔABC vuông tại A có
\(\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac45\)
\(cosB=\frac{BA}{BC}=\frac{6}{10}=\frac35\)
\(\tan B=\frac{AC}{BA}=\frac86=\frac43\)
\(\cot B=\frac{AB}{AC}=\frac68=\frac34\)

a: Xét (O) có
ΔABP nội tiếp
AP là đường kính
Do đó: ΔABP vuông tại B
=>BA⊥BP
mà CH⊥BA
nên CH//BP
Xét (O) có
ΔACP nội tiếp
AP là đường kính
Do đó: ΔACP vuông tại C
=>CP⊥CA
mà BH⊥CA
nên BH//CP
Xét tứ giác BHCP có
BH//CP
BP//CH
Do đó: BHCP là hình bình hành
Gọi HP cắt CB tại I
BHCP là hình bình hành
=>BC cắt HP tại trung điểm của mỗi đường
=>I là trung điểm chung của HP và BC
Xét (O) có
ΔAKP nội tiếp
AP là đường kính
Do đó: ΔAKP vuông tại K
=>AK⊥KP
mà AK⊥BC
nên PK//BC
Xét ΔHKP có
I là trung điểm của HP
DI//KP
Do đó: D là trung điểm của HK
=>DH=DK
b: Xét ΔCKH có
CD là đường cao
CD là đường trung tuyến
Do đó: ΔCKH cân tại C
=>CH=CK
mà CH=BP
nên BP=CK
Xét tứ giác BCPK có
BC//PK
BP=CK
Do đó: BCPK là hình thang cân

Xét ΔAHC vuông tại H có \(\sin C=\frac{AH}{AC}\)
=>\(\frac{AH}{10}=\sin30=\frac12\)
=>\(AH=\frac{10}{2}=5\left(\operatorname{cm}\right)\)
ΔAHC vuông tại H
=>\(HA^2+HC^2=CA^2\)
=>\(HC^2=10^2-5^2=100-25=75=\left(5\sqrt3\right)^2\)
=>\(HC=5\sqrt3\left(\operatorname{cm}\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=HA^2\)
=>\(HB=\frac{5^2}{5\sqrt3}=\frac{5}{\sqrt3}=\frac{5\sqrt3}{3}\) (cm)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB^2=5^2+\left(\frac{5\sqrt3}{3}\right)^2=25+\frac{25}{3}=\frac{100}{3}\)
=>\(AB=\sqrt{\frac{100}{3}}=\frac{10}{\sqrt3}\) (cm)
anh em copy link này lên youtube xem rồi đăng kí nhe cảm ơn
https://www.youtube.com/shorts/hhpTDItpePY
cảm ơn rất nhiều luôn
thì s?????