K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

\(\frac{x}{8}-\frac{2}{y}=\frac{3}{4}\)

\(\Leftrightarrow\frac{xy}{8y}-\frac{16}{8y}=\frac{3}{4}\)

\(\Leftrightarrow\frac{xy-16}{8y}=\frac{3}{4}\)

\(\Leftrightarrow4\left(xy-16\right)=3\cdot8y\)

\(\Leftrightarrow xy-16=6y\)

\(\Leftrightarrow xy-6y=16\)

\(\Leftrightarrow y\left(x-6\right)=16\)

 

14 tháng 12 2016

x/8=3/4=6/8=>x=6

6/8=2/(8:3)=2/8:3=2/8x3=2/24=>y=24

16 tháng 12 2016

2 cặp nha

Vòng 9 lớp 7 violympic

19 tháng 12 2016

=> 2/y = x/8 - 3/4 = x-6/8

<=>y(x-6) = 16 = 1.16 = 16.1 = -1.(-16)=(-16).(-1)=2.8=8.2=4.2=2.4=-4.(-2)=-2.(-4)

Xét x = 1 , y - 6 = 11 => ( x;y ) = ( 1;17 )

........

Vậy có 2 cặp số nguyên thỏa mã đề bài

20 tháng 12 2016

Hình như là 12 cặp

31 tháng 7 2016

\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)

\(\Rightarrow x=5:\frac{1-2y}{8}=\frac{40}{1-2y}\)

Do x, y là số nguyên => 40 chia hết cho 1  - 2y 

=> 1 - 2y thuộc Ư(40)

Mà 1 - 2y là lẻ => 1 - 2y thuộc {-1; 1; -5; 5}

=> y thuộc {1; 0; 3; -2}

=> x thuộc {-40; 40; -8; 8}

20 tháng 2 2018

khó quá xem trên mạng

Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)

\(\left|x-2\right|+\left|x-1\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)\(3-\left(y+2\right)^2\le3\forall y\)

nên \(1\le3-\left(y+2\right)^2\le3\)

=>\(-2\le-\left(y+2\right)^2\le0\)

=>\(2\ge\left(y+2\right)^2\ge0\)

mà x,y nguyên

nên ta sẽ có hai trường hợp

TH1: \(\left(y+2\right)^2=0\)

=>\(y+2=0\)

=>y=-2

Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)

=>|x-2|+|x-1|=3(1)

TH1: x<1

=>x-1<0; x-2<0

(1) sẽ trở thành: 1-x+2-x=3

=>3-2x=3

=>2x=0

=>x=0(nhận)

TH2: 1<=x<2

=>x-1>=0; x-2<0

(1) sẽ trở thành: x-1+2-x=3

=>1=3(vô lý)

TH3: x>=2

=>x-1>0; x-2>=0

(1) sẽ trở thành: x-1+x-2=3

=>2x=6

=>x=3(nhận)

TH2: \(\left(y+2\right)^2=1\)

=>\(\left[\begin{array}{l}y+2=1\\ y+2=-1\end{array}\right.\Rightarrow\left[\begin{array}{l}y=-1\\ y=-3\end{array}\right.\)

Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)

=>\(\left|x-2\right|+\left|x-1\right|=3-1=2\) (2)

TH1: x<1

=>x-1<0; x-2<0

(2) sẽ trở thành: 1-x+2-x=2

=>3-2x=2

=>2x=1

=>\(x=\frac12\) (nhận)

TH2: 1<=x<2

=>x-1>=0; x-2<0

(2) sẽ trở thành: x-1+2-x=2

=>1=2(vô lý)

TH3: x>=2

=>x-1>0; x-2>=0

(2) sẽ trở thành: x-1+x-2=2

=>2x=5

=>\(x=\frac52\) (nhận)