
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Để tính số số abcd mà ab lớn hơn hoặc bằng cd, ta có thể sử dụng phương pháp tạo số. Gọi a, b, c, d lần lượt là các chữ số của số abcd.
Ta có 2 trường hợp để ab lớn hơn hoặc bằng cd:
a > c: Trong trường hợp này, ta có a có thể nhận giá trị từ c+1 đến 9 và các chữ số b, c, d có thể nhận giá trị từ 0 đến 9.Số lượng số abcd tương ứng với trường hợp này là: 9 - c + 1 = 10 - c.
a = c: Trong trường hợp này, ta có b và d có thể nhận giá trị từ 0 đến 9, c có thể nhận giá trị từ 0 đến 9 trừ giá trị của b.Số lượng số abcd tương ứng với trường hợp này là: 10 x (10 - b).
Vậy tổng số số abcd mà ab lớn hơn hoặc bằng cd là:
Tổng = (10 - 0) + (10 - 1) + (10 - 2) + ... + (10 - 8) + 10 x (10 - 0) + 10 x (10 - 1) + ... + 10 x (10 - 9)
Tổng = 10 x (9 + 8 + 7 + ... + 1) + 10 x (10 + 9 + 8 + ... + 1)
Tổng = 10 x (9 x 10 / 2) + 10 x (10 x 11 / 2)
Tổng = 4500 + 5500
Tổng = 10000
Vậy có tổng cộng 10.000 số abcd mà ab lớn hơn hoặc bằng cd.

CÁCH 1:
Chú ý rằng với mỗi số có hai chữ số \(\overset{\overline}{a b}\) đã cho, nếu viết vào bên phải số này một số có hai chữ số lớn hơn số đã cho ta được một số thỏa mãn yêu cầu đề bài.
+ Với \(\overset{\overline}{a b}\) = \(10\), các số hai chữ số lớn hơn số này là \(11\); \(12\); ..; \(99\).
Do đó có \(89\) số dạng \(\overset{\overline}{10 c d}\) trong đó \(\overset{\overline}{c d}\) > \(10\).
+ Tương tự có \(88\) số dạng \(\overset{\overline}{11 c d}\);
+ Có \(87\) số dạng \(\overset{\overline}{12 c d}\);
...
+ Có \(1\) số dạng \(\overset{\overline}{98 c d}\).
Tất cả có \(89 + 88 + . . . + 2 + 1 = \left(\right. 89 + 1 \left.\right) + \left(\right. 88 + 2 \left.\right) + „ . . + \left(\right. 46 + 44 \left.\right) + 45 = 44.90 + 45 = 4\) \(005\) số.
CÁCH 2: áp dụng công thức (số cuối - số đầu) : khoảng cách + 1 = số các số hạng
+ Nếu \(\overset{\overline}{a b} = 10\) thì \(\overset{\overline}{c d}\) có thể bằng \(11 ; 12 ; . . . ; 98 ; 99\).
Có tất cả \(\left(\right. 99 - 11 \left.\right) : 1 + 1 = 89\) số.
+ Nếu \(\overset{\overline}{a b} = 11\) thì \(\overset{\overline}{c d}\) có thể bằng \(12 ; 13 ; . . . ; 98 ; 99\).
Có tất cả \(\left(\right. 99 - 12 \left.\right) : 1 + 1 = 88\) số.
...
+ Nếu \(\overset{\overline}{a b} = 97\) thì \(\overset{\overline}{c d}\) có thể bằng \(98 ; 99\).
Có tất cả \(2\) số.
+ Nếu \(\overset{\overline}{a b} = 98\) thì \(\overset{\overline}{c d}\) bằng \(99\). Có \(1\) số.
Vậy có tất cả: \(1 + 2 + . . . + 88 + 89 = \left(\right. 1 + 89 \left.\right) \times 89 : 2 = 4\) \(005\) số cần tìm.

105=3.5.7
a=3.5=15 hoặc 3.7=21 hoặc 5.7=35 mà 15<a<50
=> a\(\in\){21;35}
Vì 105 ⋮ a nên a ∈ Ư ( 105 ) = { 1 ; 3 ; 5 ; 7 ; 15 ; 35 ; 105 }
Vì 16 < a < 50 nên a = 35
Vậy a = 35