
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Có bao nhiêu số abcd mà:
a) ab>cd
b) ab<cd
a)ab>cd
Nếu ab = 10 thì cd có thể bằng 11;12;13;.............;99, có 89 số
ab = 11 thì cd có thể bằng 12;13;14;15;.........;99, có 88 số.
ab = 12 thì cd có thể bằng 13;14;15;.....................;99, có 87 số
......................
ab = 98 thì cd bằng 99, có 1 số.
Vậy số có dạng abcd mà ab<cd là:
89+88+87+........+1
= (89+1) x 89 :2
= 4005



Để tính số số abcd mà ab lớn hơn hoặc bằng cd, ta có thể sử dụng phương pháp tạo số. Gọi a, b, c, d lần lượt là các chữ số của số abcd.
Ta có 2 trường hợp để ab lớn hơn hoặc bằng cd:
a > c: Trong trường hợp này, ta có a có thể nhận giá trị từ c+1 đến 9 và các chữ số b, c, d có thể nhận giá trị từ 0 đến 9.Số lượng số abcd tương ứng với trường hợp này là: 9 - c + 1 = 10 - c.
a = c: Trong trường hợp này, ta có b và d có thể nhận giá trị từ 0 đến 9, c có thể nhận giá trị từ 0 đến 9 trừ giá trị của b.Số lượng số abcd tương ứng với trường hợp này là: 10 x (10 - b).
Vậy tổng số số abcd mà ab lớn hơn hoặc bằng cd là:
Tổng = (10 - 0) + (10 - 1) + (10 - 2) + ... + (10 - 8) + 10 x (10 - 0) + 10 x (10 - 1) + ... + 10 x (10 - 9)
Tổng = 10 x (9 + 8 + 7 + ... + 1) + 10 x (10 + 9 + 8 + ... + 1)
Tổng = 10 x (9 x 10 / 2) + 10 x (10 x 11 / 2)
Tổng = 4500 + 5500
Tổng = 10000
Vậy có tổng cộng 10.000 số abcd mà ab lớn hơn hoặc bằng cd.

CÁCH 1:
Chú ý rằng với mỗi số có hai chữ số \(\overset{\overline}{a b}\) đã cho, nếu viết vào bên phải số này một số có hai chữ số lớn hơn số đã cho ta được một số thỏa mãn yêu cầu đề bài.
+ Với \(\overset{\overline}{a b}\) = \(10\), các số hai chữ số lớn hơn số này là \(11\); \(12\); ..; \(99\).
Do đó có \(89\) số dạng \(\overset{\overline}{10 c d}\) trong đó \(\overset{\overline}{c d}\) > \(10\).
+ Tương tự có \(88\) số dạng \(\overset{\overline}{11 c d}\);
+ Có \(87\) số dạng \(\overset{\overline}{12 c d}\);
...
+ Có \(1\) số dạng \(\overset{\overline}{98 c d}\).
Tất cả có \(89 + 88 + . . . + 2 + 1 = \left(\right. 89 + 1 \left.\right) + \left(\right. 88 + 2 \left.\right) + „ . . + \left(\right. 46 + 44 \left.\right) + 45 = 44.90 + 45 = 4\) \(005\) số.
CÁCH 2: áp dụng công thức (số cuối - số đầu) : khoảng cách + 1 = số các số hạng
+ Nếu \(\overset{\overline}{a b} = 10\) thì \(\overset{\overline}{c d}\) có thể bằng \(11 ; 12 ; . . . ; 98 ; 99\).
Có tất cả \(\left(\right. 99 - 11 \left.\right) : 1 + 1 = 89\) số.
+ Nếu \(\overset{\overline}{a b} = 11\) thì \(\overset{\overline}{c d}\) có thể bằng \(12 ; 13 ; . . . ; 98 ; 99\).
Có tất cả \(\left(\right. 99 - 12 \left.\right) : 1 + 1 = 88\) số.
...
+ Nếu \(\overset{\overline}{a b} = 97\) thì \(\overset{\overline}{c d}\) có thể bằng \(98 ; 99\).
Có tất cả \(2\) số.
+ Nếu \(\overset{\overline}{a b} = 98\) thì \(\overset{\overline}{c d}\) bằng \(99\). Có \(1\) số.
Vậy có tất cả: \(1 + 2 + . . . + 88 + 89 = \left(\right. 1 + 89 \left.\right) \times 89 : 2 = 4\) \(005\) số cần tìm.

a) có vô số tự nhiên abcd có 4 mà ab > cd ( với điều kiên a>c )
b) có vô số tự nhiên abcd mà ab < cd ( với điều kiện a < c )
a)ab>cd
Nếu ab = 10 thì cd có thể bằng 11;12;13;.............;99, có 89 số
ab = 11 thì cd có thể bằng 12;13;14;15;.........;99, có 88 số.
ab = 12 thì cd có thể bằng 13;14;15;.....................;99, có 87 số
......................
ab = 98 thì cd bằng 99, có 1 số.
Vậy số có dạng abcd mà ab<cd là:
89+88+87+........+1
= (89+1) x 89 :2
= 4005
