Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vĩ độ của Hưng Yên là 210 Bắc. Tính Độ dài vĩ tuyến qua Hưng Yên, biết bán kính Trái Đất là 6370 km.


Ta có \(\left(x+y\right)^2=xy+3y-1\)
<=>\(x^2+1=-y^2-xy+3y\)
Thế vào phương trình 2 ta có
\(x+y=1+\frac{y}{-y^2-xy+3y}\)
<=> \(x+y=1-\frac{1}{x+y-3}\)
Đặt x+y=a
=> \(a=1-\frac{1}{a-3}\)<=> \(a^2-4a+4=0\)=> a=2
=> x+y=2
Thế vào 1 ta có
\(4=y\left(2-y\right)+3y-1\)=> \(y^2-5y+5=0\)=> \(\orbr{\begin{cases}y=\frac{5+\sqrt{5}}{2}\\y=\frac{5-\sqrt{5}}{2}\end{cases}}\)
Vậy \(\left(x,y\right)=\left(-\frac{1+\sqrt{5}}{2},\frac{5+\sqrt{5}}{2}\right),\left(\frac{-1+\sqrt{5}}{2},\frac{5-\sqrt{5}}{2}\right)\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\)(1)
Đặt a + b + c - 3 = x
Vì a,b,c > 1 => x > 0
=> \(\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{\left(x+3\right)^2}{x}=\frac{x^2+6x+9}{x}=x+6+\frac{9}{x}\ge2\sqrt{x\cdot\frac{9}{x}}+6=12\)( AM-GM )
=> \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\ge12\)
=> \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\left(đpcm\right)\)
Đẳng thức xảy ra <=> x = 3 => a=b=c=2

Ta có \(xy^2-\left(y-45\right)^2+2xy+x-220y+2024=0\)
<=> \(y^2\left(x-1\right)+2xy-130y+x-1=0\)
<=>\(y^2\left(x-1\right)+2y\left(x-65\right)+x-1=0\)
+, x=1
=> y=0
+\(x\ne1\)
Ta có \(\Delta'=\left(x-65\right)^2-\left(x-1\right)^2=64\left(66-2x\right)\)
Để phương trình có nghiệm nguyên thì
\(\Delta'\ge0\)và là số chính phương
Lại có 66-2x là số chẵn
\(x\le33,66-2x\in\left\{64,36,16,4\right\}\)
=> \(x\in\left\{15,25,31\right\}\)do \(x\ne1\)
x | 15 | 25 | 31 |
y | 7 | 3 | 5/3,3/5 |
Nhận | Nhận | Loại |
Vậy \(\left(x,y\right)=\left(15,7\right);\left(25,3\right);\left(1,0\right)\)
mk ở Hưng Yên nek
trải qua kì thi ko tốt cho lắm