
a/ \(9^{2n+1}+1=\left(9+1\right)\left(9^{2n}-9^{2n-1}+...\right)=10\left(9^{2n}-9^{2n-1}+...\right)\)
Chia hết cho 10
b/ \(3^{4n+1}+2=3^{4n+1}-3+5=3\left(3^{4n}-1\right)+5\)
\(=3\left(81^n-1\right)+5=3.80\left(81^{n-1}+...\right)+5\)
Cái này chia hết cho 5

Bài giải
Ta có : Nếu \(n\text{ }⋮\text{ }5\)
\(\Rightarrow\text{ }n^2=n\cdot n\text{ là bội của }n\text{ }\Rightarrow\text{ }n^2\text{ }⋮\text{ }5\)

Thay : “số tự nhiên n chia hết cho 6” bới P, “số tự nhiên n chia hết cho 3” bởi Q, ta được mệnh đề R có dạng: “Nếu P thì Q”
ta xét hai khả năng
1. nếun⋮3n⋮3 thì (n3+2n)⋮3(n3+2n)⋮3
2.nếu n không chia hết cho 3 thì n có dạng n=3k+1n=3k+1 hoặc n=3k+2
với k thuộc N
Với n=3k+1:(n3+2n)=(3k+1)3+2(3k+1)n=3k+1:(n3+2n)=(3k+1)3+2(3k+1)
=27k3+27k2+9k+1+6k+2=3(9k3+9k2+5k+1)⋮3=27k3+27k2+9k+1+6k+2=3(9k3+9k2+5k+1)⋮3
Với n=3k+2⋮(
Đúng(0)