
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(\frac{a}{b}=\frac{c}{d}=k\) (1) => a = bk ; c = dk . Thay vào \(\frac{a+c}{b+d}\) ta được :
\(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\) (2)
Từ (1) ; (2) => \(\frac{a}{b}=\frac{a+c}{b+d}\) ( đpcm )
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a+c}{b+d}\)
\(\Rightarrow\) đpcm.

Ta có :
\(\frac{a}{b}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(b+d≠0\right)\)
=> đpcm
Đặt ab=cd=kab=cd=k (1) => a = bk ; c = dk . Thay vào a+cb+da+cb+d ta được :
bk+dkb+d=k(b+d)b+d=kbk+dkb+d=k(b+d)b+d=k (2)
Từ (1) ; (2) => ab=a+cb+dab=a+cb+d ( đpcm )

Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(a+\frac{b}{a}-b=bk+\frac{b}{bk}-b=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(c+\frac{d}{c}-d=dk+\frac{d}{dk}-d=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Bài này vẫn còn cách khác để chúng minh nhưng mà làm đặt k thì dễ hiểu hơn
1.CMR
a, Từ a/b=c/d suy ra 2009a-b/a=2009c-d/c
b, Cho a, b, c, d>0
biết b=a+c/2, c=2b+d/b+d
C/m a/b=c/d

1/ Ta có: \(\frac{a}{b}\)=\(\frac{c}{d}\)=> \(\frac{a}{c}\)=\(\frac{b}{d}\)
Ta có: \(\frac{a}{c}\)=\(\frac{b}{d}\)
=>\(\frac{a}{c}\) =\(\frac{2009a-b}{2009c-d}\)
=> \(\frac{2009a-b}{a}\)=\(\frac{2009c-d}{c}\) (đpcm)

`Answer:`
a. Ta đặt \(\hept{\begin{cases}k=\frac{a}{b}=\frac{c}{d}\\bk=a\\dk=c\end{cases}}\)
\(\Rightarrow\frac{a+b}{b}=\frac{b+bk}{b}=\frac{\left(k+1\right).b}{b}=k+1\left(1\right)\)
\(\Rightarrow\frac{c+d}{d}=\frac{d+dk}{d}=\frac{\left(k+1\right).d}{d}=k+1\left(2\right)\)
Từ `(1)(2)=>\frac{a+b}{b}=\frac{c+d}{d}`

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a^n}{c^n}=\dfrac{b^n}{d^n}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^n}{c^n}=\dfrac{b^n}{d^n}=\dfrac{a^n+b^n}{c^n+d^n}=\dfrac{a^n-b^n}{c^n-d^n}\Rightarrowđpcm\)

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Suy ra: \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng dáy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Vì \(\frac{a+b}{c+d}=\frac{b}{d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Tick đúng nha