\(\sqrt{20=2.\sqrt{5}}\)

làm bằng cách khó nhất

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

a, \(\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}\right)^2-2\sqrt{10}+1}=\sqrt{\left(\sqrt{10}+1\right)^2}\)

\(=\left|\sqrt{10}+1\right|=\sqrt{10}+1\)

b, \(\sqrt{27-10\sqrt{2}}=\sqrt{5^2-10\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(5-\sqrt{2}\right)^2}\)

\(=\left|5-\sqrt{2}\right|=5-\sqrt{2}\)

c, \(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

làm nốt 2 câu cuối nhé, cách làm y trên 

25 tháng 5 2021

d/\(\sqrt{9+4\sqrt{5}}\)

\(\sqrt{2^2+4\sqrt{5}+\left(\sqrt{5}\right)^2}\)

=\(\sqrt{\left(2+\sqrt{5}\right)^2}\)

\(\left|2+\sqrt{5}\right|\)

=  \(2+\sqrt{5}\)

e/ \(\sqrt{21+4\sqrt{5}}\)

\(\sqrt{20+4\sqrt{5}+1}\)

=\(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}+1^2}\)

=\(\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(\left|2\sqrt{5}+1\right|\)

\(2\sqrt{5}+1\)

24 tháng 5 2021

a, 

\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)

b, \(\sqrt{8-\sqrt{60}}=\sqrt{8-\sqrt{4.15}}=\sqrt{8-2\sqrt{15}}\)

\(=\sqrt{8-2\sqrt{3}\sqrt{5}}=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{3}\sqrt{5}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)

2 câu cuối tự làm nhé 

4 tháng 7 2017

Xem lại đề nhé

4 tháng 7 2017

cảm ơn bạn, mình đã sửa đề

16 tháng 7 2015

\(A=\sqrt[3]{\left(\frac{1}{2}+\frac{1}{2}\sqrt{13}\right)^3}+\sqrt[3]{\left(\frac{1}{2}-\frac{1}{2}\sqrt{13}\right)^3}\)

\(=\frac{1}{2}+\frac{\sqrt{13}}{2}+\frac{1}{2}-\frac{\sqrt{13}}{2}=1\)

\(B=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}=2+\sqrt{2}+2-\sqrt{2}=4\)