Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).

â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!

\(72\cdot9^{n}=52488\)
=>\(9^{n}=\frac{52488}{72}=729\)
=>n=3
Bai 1:
Gọi d=ƯCLN(3n+11;3n+2)
=>3n+11⋮d và 3n+2⋮d
=>3n+11-3n-2⋮d
=>9⋮d
mà 3n+2 không chia hết cho 3
nên d=1
=>ƯCLN(3n+11;3n+2)=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a: n+15<=n-6
=>15<=-6(vô lý)
=>n∈∅
b: 2n+15⋮2n+3
=>2n+3+12⋮2n+3
=>12⋮2n+3
mà 2n+3>=3(do n là số tự nhiên)
nên 2n+3∈{3;6;12}
=>2n∈{0;3;9}
=>n∈\(\left\lbrace0;\frac32;\frac92\right\rbrace\)
mà n là số tự nhiên
nên n=0
c: 6n+9⋮2n+1
=>6n+3+6⋮2n+1
=>6⋮2n+1
mà 2n+1>=1(do n>=0)
nên 2n+1∈{1;2;3;6}
=>2n∈{0;1;2;5}
=>n∈\(\left\lbrace0;\frac12;1;\frac52\right\rbrace\)
mà n là số tự nhiên
nên n∈{0;1}