
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)ta có: 0, (37) + 0, (62) = 1
\(\Rightarrow\)\(\dfrac{37}{99}+\dfrac{62}{99}=1\left(ĐPCM\right)\)
b)ta có: 0, (33).3=1
\(\Rightarrow\)\(\dfrac{1}{3}.3=1\left(ĐPCM\right)\)
a) Ta có:
0, (37) = 0, (01) . 37 = \(\dfrac{1}{99}\) . 37 = \(\dfrac{37}{99}\)
0, (62) = 0, (01) . 62 = \(\dfrac{1}{99}\) . 62 = \(\dfrac{62}{99}\)
\(\Rightarrow\)0, (37) + 0, (62) = \(\dfrac{37}{99}\) + \(\dfrac{62}{99}\) = \(\dfrac{99}{99}\)= 1
Vậy 0, (37) + 0, (62) = 1 (ĐPCM)
b) Ta có:
0, (33) = 0, (01) . 33 = \(\dfrac{1}{99}\) . 33 = \(\dfrac{33}{99}\)
\(\Rightarrow\)0, (33) . 3 = \(\dfrac{33}{99}\) . 3 =\(\dfrac{99}{99}\) = 1
Vậy 0, (33) . 3 = 1 (ĐPCM)
tick mk nhé

a, 0,(37)+0,(62)=1
ta có : 0,(37)=37/99
0,(62)=62/99
=> 0,(37)+0,(62)=37/99+62/99=99/99=1
Vậy 0,(37)+0,(62)=1
b, 0,(33).3=1
ta có : 0,(33)=33/99=1/3
=> 0,(33).3=1/3.3=1
Vậy 0,(33).3=1
0,(37)+0,(62)=0,(99)
Theo quy ước làm tròn số ta dược :
0,\left(99\right)\approx10,(99)≈1 (đpcm)
b) Làm tương tự câu a) ta có :
0,\left(33\right).3=0,\left(99\right)\approx10,(33).3=0,(99)≈1 (đpcm)

0,(37) + 0,(62) =
\(\frac{37}{99}+\frac{62}{99}=\frac{99}{99}\)
\(\frac{99}{99}=1\)




a) \(\left[0,\left(37\right)+0,\left(62\right)\right]\cdot x=10\)
=> \(\left[\frac{37}{99}+\frac{62}{99}\right]\cdot x=10\)
=> \(1\cdot x=10\Rightarrow x=10\)
b) \(\frac{0,\left(12\right)}{1,\left(6\right)}=\frac{\frac{12}{99}}{\frac{5}{3}}=\frac{12}{99}\cdot\frac{3}{5}=\frac{4}{55}\)
=> \(\frac{4}{55}=x:0,\left(4\right)\)
=> \(\frac{4}{55}=x:\frac{4}{9}\)
=> \(x:\frac{4}{9}=\frac{4}{55}\)
=> \(x=\frac{4}{55}\cdot\frac{4}{9}=\frac{16}{495}\)

a) Ta có :
\(0,\left(27\right)+0,\left(72\right)==\dfrac{27}{99}+\dfrac{72}{99}=\dfrac{99}{99}=1\)
\(\Rightarrow0,\left(27\right)+0,\left(72\right)=1\rightarrowđpcm\)
b) Ta có :
\(0,\left(22\right).\dfrac{9}{2}=\dfrac{2}{9}.\dfrac{9}{2}=\dfrac{18}{18}=1\)
\(\Rightarrow0,22.\dfrac{9}{2}=1\rightarrowđpcm\)
c) Ta có :
\(\left[0,\left(11\right).9\right]^{2003}=\left[\dfrac{1}{9}.9\right]^{2003}=\left[\dfrac{9}{9}\right]^{2003}=1^{2003}=1\)
\(\Rightarrow\left[0,\left(11\right).9\right]^{2003}=1\rightarrowđpcm\)
Ta có: