
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi ƯCLN(2n+3;3n+5)=d
Ta có:
2n+3 chia hết cho d=> 3(2n+3) chia hết cho d=>6n+9 chia hết cho d
3n+5 chia hết cho d=>2(3n+5) chia hét cho d=>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=> 6n+10-6n-9 chia hết cho d
=> 1 chia hết cho d
mà d lớn nhất
=> d=1 (ĐPCM) ( vì d=1 nên 2n+3/3n+5=1, là phân số tối giản)

Gọi n là ƯC ( n + 1 ; 2n + 1 ) và n E N*
Suy ra n + 1 chia hết cho n
2n + 1 chia hết cho n
Vậy 2n + 2 chia hết cho n
2n + 1 chia hết cho n
nên (2n + 2) - (2n + 1) chia hết cho n
= 2n + 2 - 2n - 1 chia hết cho n
= 1 chia hết cho n suy ra n = 1
Vậy n + 1 và 2n + 1 là nguyên tố cùng nhau
Vậy \(\frac{n+1}{2n+1}\)là phân số tối giản
Gọi d là UCLN(n+1 ; 2n+1 )
\(\Rightarrow n+1⋮d\)và \(2n+1⋮d\)
\(\Rightarrow2.\left(n+1\right)⋮d\)hay \(2n+2⋮d\)
\(\Rightarrow2n+2-\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
Vậy d = 1/-1 \(\Rightarrow dpcm\)
Ai thấy đúng thì ủng hộ

Để chứng mình phân số đó là tối giản, ta cần chỉ ra ước chung lớn nhất của tử số và mẫu số bằng 1
a) Đặt \(d\inƯCLN\left(n+1,2n+3\right)\), ta có:
\(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}}\)
\(=\hept{\begin{cases}2n+2\cdot2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow d=1\)
b) Tương tự, gọi \(d\inƯCLN\left(2n+3,4n+8\right)\), ta có:
\(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+3⋮d\\2:\left(4n+8\right)⋮d\end{cases}}\)
\(=\hept{\begin{cases}2n+3⋮d\\2n+4⋮d\end{cases}}\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow d=1\)

Gọi \(ƯCLN\left(2n+5,n+3\right)=a\text{ }\)
Ta có:
\(\hept{\begin{cases}2n+5⋮a\\n+3⋮a\end{cases}\Rightarrow}\hept{\begin{cases}2n+5⋮a\\2.\left(n+3\right)⋮a\end{cases}\Rightarrow\hept{\begin{cases}2n+5⋮a\\2n+6⋮a\end{cases}}}\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮a\)
\(\Leftrightarrow1⋮a\)
\(\Rightarrow a=1\)
Hay \(ƯCLN\left(2n+5,n+3\right)=1\text{ }\)
Vậy chứng tỏ \(\frac{2n+5}{n+3}\) là phân số tối giản.
Gọi ƯCLN \(\left(2n+5.n+3\right)\)là \(d\left(d>1\right)\)
Ta có : \(\hept{\begin{cases}2n+5⋮d\\n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+5⋮d\\2n+6⋮d\end{cases}}\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\le1\)
Mà \(d\ge1\Rightarrow d=1\)
Vậy phân số tối giản

Mk sẽ giải từng câu :)
Bài 1 :
Gọi \(ƯCLN\left(2n+2;6n+5\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(2n+2\right)⋮d\\2\left(6n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+12⋮d\\12n+10⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(12n+12\right)-\left(12n+10\right)⋮d\)
\(\Rightarrow\)\(2⋮d\)
\(\Rightarrow\)\(d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Mà \(6n+5\) không chia hết cho \(2\) và \(-2\) nên \(ƯCLN\left(2n+2;6n+5\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản với mọi n
Chúc bạn học tốt ~
1. Gọi d = ƯCLN (2n+2,6n+5)
=>\(\hept{\begin{cases}2n+2\\6n+5\end{cases}}\)chia hết cho d
=>\(\hept{\begin{cases}3.\left(2n+2\right)\\6n+5\end{cases}}\)chia hết cho d
=>\(\hept{\begin{cases}6n+6^{\left(1\right)}\\6n+5^{\left(2\right)}\end{cases}}\)chia hết cho d
Từ (1) và (2) => (6n+6) - (6n+5) chia hết cho d
=> 6n + 6 - 6n - 5 chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN (2n+2,6n+5) = 1
Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản
2. Ta có:
B = 32. (\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{67.70}\))
B = 32. (\(\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{67}-\frac{1}{70}\))
B = 32. (\(\frac{1}{10}-\frac{1}{70}\))
B = 27/35
Vì \(\frac{27}{35}< 1\)
=> B < 1
3. x + \(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)
x + ( \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)
x + (\(\frac{1}{5}-\frac{1}{45}\)) = \(\frac{-37}{45}\)
x + \(\frac{8}{45}=\frac{-37}{45}\)
x = \(\frac{-37}{45}-\frac{8}{45}\)
x = -1

Giả sử phân số trên chưa tối giản
Gọi \(ƯCLN\)(2n + 5 ; n + 3) là : d( d > 1)
\(\Rightarrow2n+5⋮d;n+3⋮d\)
\(\Rightarrow2\left(n+3\right)⋮d\Rightarrow2n+6⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy p/s trên tối giản
Bài giải:
Để \(\frac{2n+5}{n+3}\)là phần số tối giản <=>ƯCLN(2n + 5; n + 3) = {1; -1}
Gọi d là ƯCLN(2n + 5; n + 3)
=> 2n + 5 \(⋮\)d
=> n + 3 \(⋮\)d => 2(n + 3) \(⋮\) d => 2n + 6\(⋮\)d
=> (2n + 6) - (2n + 5) = 1 \(⋮\)d => d \(\in\){1; -1}
Vậy 2n + 5/n + 3 là phân số tối giản

a) để A là số nguyên thì n+5 chia hết cho n+4
suy ra (n+5)-(n+4) chia hết cho n+4
suy ra 1 chia hết cho n+4
suy ra n+4 thuộc{1;-1}
suy ra n thuộc{-3;-5}
b)coi UCLN (n+5;n+4}=d
suy ra (n+5)-(n+4) chia hết cho d
suy ra 1 chia hết cho d
suy ra ƯCLN (n+4;n+5) =1
vậy với n thuộc N thì phân số tối giản
a)A la so nguyen=>n+5chia het n+4=>n+4 chia het n+4
=>(n+5-n+4)chia het n+4
=>9 chia het n+4
=>n+4 la uoc cua 9
=>n+4=1;-1;3;-3;9;-9
(neu cac truong hop)
=>n+4=1;3;-9
=>n=-3.
mk bt lam cau a thoy. Ko chac ddungs
gọi d là ước chung lớn nhất của 2n + 5 và n+3
<=> 2n+5 \(⋮\)d và n+3 \(⋮\)d
mà 2n+5 \(⋮\)d => 2(n+3) \(⋮\)d <=> 2n+6\(⋮\)d
2n+6-(2n+5) = 1 \(⋮\)d
=> d =1
=> \(\frac{2n+5}{n+3}\)là phân số tối giản