Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a;\(aaa=111\cdot a\)
\(\Rightarrow aaa=3\cdot37\cdot a\)
\(\Rightarrow aaa⋮37\left(3a\inℕ\right)\)
b;\(a\ge b;ab-ba=10a+b-10b-a\)
\(\Rightarrow ab-ba=9a-9b\)
\(\Rightarrow ab-ba=9\left(a-b\right)\)
\(\Rightarrow ab-ba⋮9\left(a\ge b\Rightarrow a-b\ge0\right)\)

Đặt n2+3n+5 = (*)
Giả sử n=1 => (*) <=> 12+3.1+5 không chia hết cho 121 ( đúng )
Vậy với n=1 đúng
Giả sử (*) đúng với n=k
=> (*) <=> k2+3k+5
Ta cần c/m (*) đúng với n = k+1
Thật vậy với n= k+1
=> (*) <=> (k+1)2+3(k+1)+5
tự viết tiếp

1. Ta có dãy chia hết cho 2 : 2,4,6,...,100
Có số ' số chia hết cho 2 là :
(100-2):2+1=50 số
Ta có dãy chia hết cho 5 : 5,10,15,...,100
Có số ' số chia hết cho 5 là :
(100-5):5+1=20 số
2.
- n là số lẻ nên suy ra n+7 là chẵn
=> (n+4)(n+7) là số chẵn
- n là số chẵn suy ra n+4 là chẵn
=> (n+4)(n+7) là số chẵn
Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .
=> đpcm

Xét 2 trường hợp:
* Nếu n là số lẻ thì:
n + 3 là số chẵn
n + 6 là số lẻ
suy ra (n+3)(n+6) là số chẵn và chia hết cho 2
* Nếu n là số chẵn thì:
n + 3 là số lẻ
n + 6 là số chẵn
suy ra (n+3)(n+6) là số chẵn và chia hết cho 2
Vậy với mọi ...........
Nhớ k cho mình nhé! Thank you!!!

Bài 7: Với n =1 \(2.7^n+1=15⋮3\Rightarrow\) mệnh đề đúng với n = 1 (1)
Giả sử đúng với n = k.Tức là \(2.7^k+1⋮3\).Ta c/m nó đúng với n = k + 1. (2)
Tức là c/m \(2.7^{k+1}+1⋮3\).Thật vậy:
\(2.7^{k+1}+1=7\left(2.7^k+1\right)-6\)
Do \(2.7^k+1⋮3\Rightarrow7\left(2.7^k+1\right)⋮3\) và \(6⋮3\)
Suy ra \(2.7^{k+1}+1=7\left(2.7^k+1\right)-6⋮3\) (3)
Từ (1),(2) và (3) ta có đpcm.
Ta có: A = 1 + 3 + 32 + 33 +....+ 310
=> 3A = 3 + 32 + 33 + 34 + ..... + 311
=> 3A - A = 311 - 1
=> 2A = 311 - 1
=> 2A + 1 = 311
=> n = 11
aaaaa=10000a+1000a+100a+10a+a=a(10000+1000+100+10=111111a=15873.7.a
=>aaaaaa chia hết cho 7
a) aaaaaa = a . 111111 = a . 7 . 15873 chia hết cho 7
b) a = 3
c) Ta có
( n + 3 ) ( n + 6 ) = ( n + 3 ) n + ( n + 3 ) 6
= n2 + 3n + 6n + 18
= n2 + 9n + 18
= n2 + 9( n + 2 )
Ta xét
Nếu n = 2k thì
n2 là số chẵn => chia hết cho 2
n + 2 là số chẵn => 9( n + 2 ) chia hết cho 2
=> n2 + 9( n + 2 ) chia hết cho 2 ( 1 )
Nếu n = 2k + 1 thì
n2 là số lẻ
n + 2 là số lẻ => 9( n + 2 ) là số lẻ
Do lẻ + lẻ = chẵn nên n2 + 9( n + 2 ) chia hết cho 2 (2)
Từ (1) và (2) suy ra với mọi n thì ( n + 3 ) ( n + 6 ) chia hết cho 2