K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

Ta thấy 30 = 5 x 6

Vì A là tổng các lũy thừa của 5 nên chia hết cho 5

Ta có: A = ( 5 + 52 ) + ( 53 + 54 ) +......+ ( 529 + 530 )

             = 5.(1 + 5) + 53 . ( 1 + 5) + ..... +529  . ( 1 + 5)

             = 5 . 6 + 53 . 6+ ..... + 529 . 6

              = (5 + 53 + .... + 529 ) . 6 chia hết cho 6

Vậy A chia hết cho 30

Ta có: A = (5 + 52 + 53) + ( 54 + 55 + 56 ) + ..... + ( 528 + 529 + 530 )

             = 5.(1 + 5 + 25) + 54 . ( 1 + 5 + 25) + ..... + 528 . (1 + 5 + 25)

            = 5. 31 + 54 .31 + ..... + 528 .31

            = ( 5 + 54 + ..... + 528 ) . 31 chia hết cho 31

23 tháng 6 2016

mik ngại viết lắm xin lỗi

Câu hỏi của Phạm Quang Huy - Toán lớp 6 - Học toán với OnlineMath

20 tháng 8 2020

\(7^{n+4}-7^n=7^n.7^4-7^n=7^n.\left(7^4-1\right)=7^n.2400\) chia hết cho 30

20 tháng 8 2020

\(=125+\left(81+4\right).2+\left(27-3\right):4\)

\(=125+85.2+\left(27-3\right):4\)

\(=125+85.2+24:4\)

\(=125+170+24:4\)

\(=125+170+6\)

\(=295+6\)

\(=301\)

7 tháng 1 2021

a) P=2+22+23+24+...+260 \(⋮\) 21 và 15

\(\Rightarrow\)P = 22+23+24+25+...+261  

\(\Rightarrow\) (2P - P) = 261 - 2

\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)

Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15

tức là (260 - 1) \(⋮\)3; 5; 7

*Ta có 260 - 1 = (24)15 = 1615 - 1

          = (16 - 1).(1+16+162+163+...+1614)

          = 15.(1+16+162+163+...+1614\(⋮\) 15  

Vậy  P \(⋮\) 15  (1)

    * Ta có 260 - 1 = (26)10 - 1 = 6410 - 1

                = (64 - 1).(1+64+642+643+...+64)

                = 63 \(⋮\) (1+64+642+643+...+64)

                = 21.3.(1+64+642+643+...+64\(⋮\) 21

         P \(⋮\)21   (2) 

    Từ (1) và (2) \(\Rightarrow\)  P \(⋮\)15 và 21

  

 
8 tháng 11 2019

=xnxx+sex+18+

28 tháng 10 2016

MÌNH TRẢ LỜI ĐƯỢC NHƯNG KHI MÌNH TRẢ LỜI XONG NHỚ K CHO MÌNH 3 NHE

25 tháng 10 2016

bhhhhhhhhhhhh

28 tháng 10 2016

Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)

Ta có:

\(A=1+5+5^2+...+5^{2013}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)

\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)

\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)

\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)

\(31⋮31\)

\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)

hay\(A⋮31\) (đpcm)

29 tháng 10 2016

Này đề là chia hết cho 13 sao lại làm chia hết cho 31 cô mình ra bài này mà