K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 giờ trước (12:50)

(\(x^2-2x+4\)).(\(x^4\) - 2\(x^2\) + 8) = 21

[(\(x^2-2x+1\)) + 3].[(\(x^4\) - 2\(x^2\) + 1) + 7] = 21

[(\(x-1)^2+3]\).[(\(x^2-1)^2+7]\) = 21

Vì (\(x-1)^2\) ≥ 0 ∀ \(x\); (\(x^2-1\))\(^2\) ≥ 0 \(\) ∀ \(x\) nên:

(\(x-1)^2+3\) ≥ 3; (\(x^2-1)^2+7\) ≥ 7 ∀ \(x\)

[(\(x^2-2x+1\)) + 3].[(\(x^4\) - 2\(x^2\) + 1) + 7] ≥ 3 x 7 = 21

Dấu bằng xảy ra khi \(\begin{cases}x-1=0\\ x^2-1=0\end{cases}\)

\(x\) = 1

10 tháng 11 2019

Hjhj mình vừa giải trên F

8 tháng 11 2019

Trẻ con giờ ghê thật chưa gì đã dồn biến, khử lũy thừa rồi, có khi mình tiến hóa ko kịp mất xd

\(S=ab^2+bc^2+ca^2-abc\)

WLOG \(b=mid\left\{a,b,c\right\}\) khi đó \(S\le a^2b+bc^2+abc-abc=b\left(1-b^2\right)\)

\(=\sqrt{\frac{1}{2}\cdot\left(\frac{2b^2+1-b^2+1-b^2}{3}\right)^3}=\frac{2\sqrt{3}}{9}\)

Sau khi đã có kq \(\frac{2\sqrt{3}}{9}\)rồi ai có đam mê biến đổi có thể cm bdt sau, làm thành bổ đề về sau dùng \(\left(ab^2+bc^2+ca^2-abc\right)^2\le\frac{4}{27}\left(a^2+b^2+c^2\right)^3\)

WLOG \(a=min\left\{a,b,c\right\},b=a+u,c=a+v\) khi đó bdt cần cm tương đương 

\(-\left(v^2-2u^2\right)^2\left(u^2+4v^2\right)-.....\le0\) 

ngại viết quá nhưng đại ý là nó sẽ bé hơn hoặc bằng 0 sau đó lấy căn 2 vế ta cũng dc GTLN tương ứng 

8 tháng 11 2019

đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0) 

bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)

Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD 

10 giờ trước (12:49)

(\(x^2-2x+4\)).(\(x^4\) - 2\(x^2\) + 8) = 21

[(\(x^2-2x+1\)) + 3].[(\(x^4\) - 2\(x^2\) + 1) + 7] = 21

[(\(x-1)^2+3]\).[(\(x^2-1)^2+7]\) = 21

Vì (\(x-1)^2\) ≥ 0 ∀ \(x\); (\(x^2-1\))\(^2\) ≥ 0 \(\)\(x\) nên:

(\(x-1)^2+3\) ≥ 3; (\(x^2-1)^2+7\) ≥ 7 ∀ \(x\)

[(\(x^2-2x+1\)) + 3].[(\(x^4\) - 2\(x^2\) + 1) + 7] ≥ 3 x 7 = 21

Dấu bằng xảy ra khi \(\begin{cases}x-1=0\\ x^2-1=0\end{cases}\)

\(x\) = 1

Vậy \(x=1\)


AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Phần e)

\((x+2)(x+3)(x-7)(x-8)=144\)

\(\Leftrightarrow [(x+2)(x-7)][(x+3)(x-8)]=144\)

\(\Leftrightarrow (x^2-5x-14)(x^2-5x-24)=144\)

Đặt \(x^2-5x-24=a\). PT trở thành:

\((a+10)a=144\)

\(\Leftrightarrow a^2+10a=144\)

\(\Leftrightarrow (a+5)^2=169\)

\(\Leftrightarrow \left[\begin{matrix} a+5=13\rightarrow a=8\\ a+5=-13\rightarrow a=-18\end{matrix}\right.\)

Nếu \(a=8\Leftrightarrow x^2-5x-24=8\Leftrightarrow x^2-5x-32=0\)

\(\Leftrightarrow x=\frac{5\pm 3\sqrt{17}}{2}\)

Nếu \(a=-18\Rightarrow x^2-5x-24=-18\)

\(\Leftrightarrow x^2-5x-6=0\Leftrightarrow (x+1)(x-6)=0\Leftrightarrow x=-1\) hoặc \(x=6\)

Vậy..........

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Phần f)

ĐKXĐ: \(x\geq \frac{1}{2}\)

\(2x+8\sqrt{2x-1}=21\)

\(\Leftrightarrow (2x-1)+8\sqrt{2x-1}+16=36\)

\(\Leftrightarrow (\sqrt{2x-1}+4)^2=36\)

\(\Leftrightarrow \left[\begin{matrix} \sqrt{2x-1}+4=6\\ \sqrt{2x-1}+4=-6\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \sqrt{2x-1}=2\\ \sqrt{2x-1}=-10<0(\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow \sqrt{2x-1}=2\Rightarrow 2x-1=4\Rightarrow x=\frac{5}{2}\) (thỏa mãn)

Vậy \(x=\frac{5}{2}\)

Phần i)

\(2x^2-3-4(x-1)=0\)

\(\Leftrightarrow 2x^2-4x+1=0\)

\(\Leftrightarrow 2(x^2-2x+1)-1=0\)

\(\Leftrightarrow 2(x-1)^2=1\Leftrightarrow \left[\begin{matrix} x-1=\frac{1}{\sqrt{2}}\\ x-1=-\frac{1}{\sqrt{2}}\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=1+\frac{\sqrt{2}}{2}\\ x=1-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

29 tháng 9 2017

con 6 tách trong căn thành nhân tử  nhân 2 vế cho 2 rồi tách thành hđt

15 tháng 10 2019

đặt nhân tử chung nha

                 Đề thi HSG cấp huyện phòng GD_ĐT Tiên Lữ                               năm học 2009-2010Cho mấy câu hơi khó + khó thôi , mấy câu kia rút gọn dễ lắm2, GPT ; \(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+18}=6x-5-x^2\) 3, Trên cùng 1 mặt phẳng tọa độ cho các điểm M(2;1) , N(3;-4) , P(5;3) lần lượt là trung điểm AB , BC và CA của t/g ABCa, Viết pt đường thẳng BCb, Xđ điểm D / tứ giác ABCD là...
Đọc tiếp

                 Đề thi HSG cấp huyện phòng GD_ĐT Tiên Lữ 

                              năm học 2009-2010

Cho mấy câu hơi khó + khó thôi , mấy câu kia rút gọn dễ lắm

2, GPT ; \(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+18}=6x-5-x^2\)

 3, Trên cùng 1 mặt phẳng tọa độ cho các điểm M(2;1) , N(3;-4) , P(5;3) lần lượt là trung điểm AB , BC và CA của t/g ABC

a, Viết pt đường thẳng BC

b, Xđ điểm D / tứ giác ABCD là hình bình hành

5,(đề dành cho hs trường Tiên Lữ)

a, Tìm \(P_{min}=x^4+2x^3+3x^2+2x+1\)

b, Cho a,b,c > 0 . CM \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ac}\ge a+b+c\)

5(đề dành cho hs ko là trường Tiên Lữ )

a,GPT \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+8-2\sqrt{x+7}}=4\)

b, Cho (O) và (O') tiếp xúc ngoài tại A . BC là tiếp tuyến chung ngoài (B thuộc (O) , C thuộc (O') ) Vẽ đường kính BD của (O) . CMR:

 \(BD^2=DA.DC\)

Nói chung đề này cx dễ

5
6 tháng 11 2018

Mấy câu này đa số là bất,nói chung cũng ez

6 tháng 11 2018

\(\frac{a^3+b^3}{2ab}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2ab}\ge\frac{\left(a+b\right)\left(2ab-ab\right)}{2ab}=\frac{a+b}{2}\)

Chứng minh tương tự và cộng theo vế suy ra đpcm

12 tháng 10 2021

\(\sqrt{x^2-2x+4}+\sqrt{x^2+5}=9-2x\left(đk:x\le\dfrac{9}{2}\right)\)

\(\Leftrightarrow x^2-2x+4+x^2+5+2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=81-36x+4x^2\)

\(\Leftrightarrow2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=2x^2-34x+72\)

\(\Leftrightarrow4\left(x^2-2x+4\right)\left(x^2+5\right)=4x^4+1156x^2+5184-136x^3+288x^2-4896x\)

\(\Leftrightarrow4x^4-8x^3+36x^2-40x+80=4x^4-136x^3+1444x^2-4896x+5184\)

\(\Leftrightarrow128x^3-1408x^2+4856x-5104=0\)

\(\Leftrightarrow128x^2\left(x-2\right)-1152x\left(x-2\right)+2552\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(128x^2-1152x+2552\right)=0\)

\(\Leftrightarrow x=2\left(tm\right)\)(do \(128x^2-1152x+2552>0\))

12 tháng 10 2021

cảm mơn bn ạ