K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

Vì tổng 3 số tự nhiên liên tiếp là 1 số lẻ => trong 3 số đó có 2 số chẵn và 1 số lẻ

Gọi 3 số đó là 2k+2; 2k+3; 2k+4 (k thuộc N)

Tích 3 số trên là: (2k+2).(2k+3).(2k+4)

Vì (2k+2).(2k+3).(2k+4) là tích 3 số tự nhiên liên tiếp nên (2k+2).(2k+3).(2k+4) chia hết cho 3 (1)

Do (2k+2).(2k+4) là tích 2 số chẵn liên tiếp nên (2k+2).(2k+4) chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 => (2k+2).(2k+3).(2k+4) chia hết cho 24

=> đpcm

28 tháng 7 2017

a) Gọi 3 số nguyên liên tiếp là \(x -1 ; x ; x + 1 .\)

Ta có : (x - 1)3 + x3 + (x + 1)3

= x3 - 1 - 3x(x - 1) + x3 + x3 + 1 + 3x(x + 1)

= 3x3 - 3x(x - 1 - x - 1)

= 3x3 + 6x

= 3x3 - 3x + 9x

\(= 3(x - 1)x(x + 1) +9x\)

\((x - 1)x(x + 1) \) chia hết cho 3 nên \(3(x - 1)x(x + 1)\) chia hết cho 9

Vì 9 chia hết cho 9 nên 9x chia hết cho 9

\(\Rightarrow\) \(3(x - 1)x(x + 1) + 9x\) chia hết cho 9

\(\RightarrowĐPCM\)

29 tháng 7 2017

Chứng minh: n^2 + 4n + 5 không chia hết cho 8 với mọi số nguyên ...

Đây nhé Taylor!!

Chúc bạn học tốt!!! Lần sau nhớ tra nha(đang lười làm khì khì)

19 tháng 7 2015

a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

ta có:

(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8

b) gọi số lẽ đó là 2k+1

ta có:

(2k+1)2-1=(2k+1-1)(2k+1+1)

=2k.(2k+2)

=4k2+4k

Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2 

=>4k2+4k chia hết cho 8

Vậy  Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8

19 tháng 7 2015

de thi lam di 

noi vay toi cung noi duoc

 

gọi số ở giữa là n thì ta có (n-1)+n+(n+1)=3n là số lẻ do đó n cũng là một số lẻ vậy:

(n-1) và (n+1) là 2 số chẵn liên tiếp(đã chia hết cho 2) thì trong chúng có 1 chữ số chia hết cho 4;
:
trong ba chữ số tự nhiên liên tiếp ta lai luôn có 1 chữ số chia hết cho 3
vậy tích của ba sooschia hết cho 2x4x3=24 cm xong

25 tháng 6 2015

Gọi 2k+1 va 2p+1 la các số lẻ 
hieu cac binh phuong cua 2 so le la`: 
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p) 
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p... 
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8 
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8

25 tháng 6 2015

sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8

25 tháng 6 2015

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8

Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8

25 tháng 6 2015

Giả

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8

Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8.

20 tháng 7 2018

Gọi 2 số lẻ liên tiếp là:   \(2k-1\)và   \(2k+1\)

Xét hiệu:    \(A=\left(2k+1\right)^2-\left(2k-1\right)^2\)

                  \(=4k^2+4k+1-\left(4k^2-4k+1\right)\)

                  \(=8k\) \(⋮\)\(8\)

\(\Rightarrow\)\(A\)\(⋮\)\(8\)

hay hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8

8 tháng 8 2016

\(A=3^9-8=\left(3^3\right)^3-2^3=27^3-2^3=\left(27-2\right)\left(27^2+27\times2+2^2\right)=25\times\left(27^2+27\times2+2^2\right)\)

Vậy A chia hết cho 25 (đpcm)

***

\(B=\left(n+2\right)^2-\left(n-2\right)^2=\left(n+2+n-2\right)\left(n+2-n+2\right)=2n\times4=8n\)

Vậy B chia hết cho 8 (đpcm)

***

\(C=\left(n+7\right)^2-\left(n-5\right)^2=\left(n+7+n-5\right)\left(n+7-n+5\right)=\left(2n+2\right)\times12=12\times2\times\left(n+1\right)=24\times\left(n+1\right)\)

Vậy C chia hết cho 24 (đpcm)

***

Gọi 2 số lẻ liên tiếp là 2k + 1 và 2k + 3

\(D=\left(2k+1\right)^2-\left(2k+3\right)^2=\left(2k+1+2k+3\right)\left(2k+1-2k-3\right)=\left(4k+4\right)\times\left(-2\right)=\left(-2\right)\times4\times\left(k+1\right)=-8\times\left(k+1\right)\)Vậy D chia hết cho 8 (dpcm)