K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

b;

bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.

.......................................................................3......n=3k và 3k + 1 và 3k+2

c;

bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9

d;tương tự b

e;g;tương tự a

5 tháng 5 2017

Ta có :

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+1-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

5 tháng 5 2017

\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(...\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\\ \Rightarrow A< 2\)

1 tháng 9

Bài1

1 tháng 9

Bài2

31 tháng 8 2019

1. Gọi số tự nhiên bất kì là a

Ta có: a + (a+1) + (a+2) = 3a + 3 chia hết cho 3

Vậy…

31 tháng 8 2019

2. Ta có 2^15 = 2.2…2.2 (15 số 2) chia hết cho 2

    Lại có 424 = 2.212 chia hết cho 2

Vậy…