
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


3n+2 - 2n+2 + 3n - 2n
= 3n.(32+1) - 2n(22+1)
= 3n.10 - 2n.5
Có: 3n.10 có tận cùng là 0
Vì 2n chẵn
=> 2n.5 có tận cùng là 0
=> 3n.10 - 2n.5 có tận cùng là 0 => chia hết cho 10
=> 3n+2-2n+2+3n-2n chia hết cho 10 (đpcm)


Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}....;\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)
\(=n.\frac{1}{\sqrt{n}}=\sqrt{n}\left(dpcm\right)\)

Ta có: \(M=5^{n+2}-5^{n+1}-2^{n+2}-2^{n}\)
\(=5^{n+1}\left(5-1\right)-2^{n}\left(2^2+1\right)\)
\(=5^{n}\cdot5\cdot4-2^{n}\cdot5=5^{n}\cdot20-2^{n-1}\cdot10=10\left(5^{n}\cdot4-2^{n-1}\right)\) ⋮10
=>M luôn có chữ số tận cùng bằng 0