K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 11 2021

Lời giải:
Cho $a_1,a_2,...,a_n>0; b_1,b_2,...,b_n>0$. Khi đó:
\(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+...+\frac{a_n^2}{b_n}\geq \frac{(a_1+a_2+....+a_n)^2}{b_1+b_2+...+b_n}\)

1 tháng 4 2018
  • (a² + b²)(c² + d²) ≥ (ac + bd)²
  • Chứng minh: (a² + b²)(c² + d²) ≥ (ac + bd)² ↔ (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)² ↔ (ad)² + (bc)² ≥ 2abcd ↔ (ad)² - 2abcd + (bc)² ≥ 0 ↔ (ad - bc)² ≥ 0
  • Dấu " = " xảy ra khi {\displaystyle {\frac {a}{c}}={\frac {b}{d}}}{\displaystyle {\frac {a}{c}}={\frac {b}{d}}}
1 tháng 4 2018

cosi nhé

10 tháng 11 2018

Giải bài tập Toán 9 | Giải Toán lớp 9

 Giải bài tập Toán 9 | Giải Toán lớp 9

 Giải bài tập Toán 9 | Giải Toán lớp 9

 Giải bài tập Toán 9 | Giải Toán lớp 9

 Giải bài tập Toán 9 | Giải Toán lớp 9 

Giải bài tập Toán 9 | Giải Toán lớp 9

18 tháng 3 2018

 

Giải bài tập Toán 9 | Giải Toán lớp 9 

Giải bài tập Toán 9 | Giải Toán lớp 9

Giải bài tập Toán 9 | Giải Toán lớp 9 

Giải bài tập Toán 9 | Giải Toán lớp 9

Giải bài tập Toán 9 | Giải Toán lớp 9 Giải bài tập Toán 9 | Giải Toán lớp 9

20 tháng 10 2018

Có 6 cách nè:
Cách 1+cách 2:có trong SGK toán 7(PP diện tích)
Cách 3:(của một Tổng thống Mỹ hẳn hoi,ko biết có đúng ko)
Cho 2 tam giác vuông ABC và A'BC' (góc A= góc A' =90 độ)đặt cạnh nhau sao cho có được hình thang vuông ACC'A'(AC song song A'C') rồi dùng Đại số là ra
Cách 4:(của một nhà toán học Ấn Độ)
Dựng hình vuông ABCD và các tam giác vuông MAB,NBC,PCD,QDA để được hình vuông MNPQ rồi lại Đại số là ra
Cách 5:(thuần túy Hình học)Với ABC(góc A=90 độ) dựng ra ngoài 3 hình vuông ABDE,ACGH và BCM rồi dùng tam giác bằng nhau
Cách 6:Sử dụng hệ thức lượng trong tam giác vuông(lớp 9) 

20 tháng 10 2018

định lý Pytago (còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.