K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

S=30+32+34+36+.......+32002

=(30+32+34)+(36+38+310)+....+(31998+32000+32002)

=(1+32+34)+36.(1+32+34)+...+31998.(1+32+34)

=(1+32+34)(1+36+...+31998)

=91.(1+36+...+31998) chia hết cho 7 (vì 91 chia hết cho 7)

_-_..............

8 tháng 1 2017

nhân S với 3 2 ta dc:

9S=3^2+3^4+...+3^2002+3^2004

=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)

=>8S=3^ 2004-1

=>S=3^ 2004-1 /8

ta có S là số nguyên nên phải chứng minh 3 ^2004-1 chia hết cho 7

ta có:3^ 2004-1=(3^ 6 ) 334-1=(3^ 6-1 ).M=7.104.M

=>3 ^2004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7 

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

26 tháng 11 2017

a) 9S=3^2+3^4+...+3^2002+3^2004

=> 9S-S= (3^2+3^4+...+3^2002+3^2004)-(3^0+3^2+...+3^2002)

8S = 3^2004 - 3 = 3(3^2003-1) 

=> S= 3/8.(3^2003-1)

b) Ta có: S= (3^0+3^2+3^4) + (3^6+3^8+3^10)+....+(3^1998+3^2000+3^2002)

             S = 3^0(1+3^2+3^4) +3^6(1+3^2+3^4)+....+3^1998(1+3^2+3^4)

 S = 3^0.91+3^6.91+...+3^1998.91

S = 3^0.13.7 + 3^6.13.7 +...+ 3^1998.13.7

Vì mỗi số hạng đều chia hết cho 7 nên S chia hết cho 7

5 tháng 10 2015

b) S=(30+32+34)+...+(31998+32000+32002)

S= 91+...+31998(1+32+34)

S=91+...+31998.91

S=91(1+36+...+31998)

S=13.7.(1+36+...+31998) chia hết cho 7

       
 

5 tháng 10 2015

Thôi không cần nữa 

1 tháng 10 2016

sorry mình không biết

1 tháng 10 2016

mình bít phần a đây

21 tháng 4 2016

a) \(S=3^0+3^2+3^4+....+3^{2002}\)

\(3^2S=3^2+3^4+....+3^{2004}\)

\(3^2S-S=\left(3^2+...+3^{2004}\right)-\left(3^0+...+3^{2002}\right)\)

\(8S=3^{2004}-1\)

\(S=\frac{3^{2004}-1}{8}\)

15 tháng 12 2016

 

a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)

b, Xét dãy số mũ : 0;2;4;6;...;2002

Số số hạng của dãy số trên là :

( 2002 - 0 ) : 2 + 1 = 1002 ( số )

Ta ghép được số nhóm là :

1002 : 3 = 334 ( nhóm )

Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)

Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)

16 tháng 12 2016

CẢM ƠN

 

13 tháng 4 2015

b) S=(30+32+34)+...+(31998+32000+32002)

S= 91+...+31998(1+32+34)

S=91+...+31998.91

S=91(1+36+...+31998)

S=13.7.(1+36+...+31998) chia hết cho 7

       

 

14 tháng 3 2020

a) S=30+32+34+...+32002

\(\Rightarrow\)9S=32+34+36+...+32004

\(\Rightarrow\)9S-S=(32+34+36+...+32004)-(1+32+34+...+32002)

8S=32004-1

\(\Rightarrow S=\frac{3^{2004}-1}{8}\)

b) Ta có : S=1+32+34+...+32002

=(1+32+34)+(36+38+310)+...+(31998+32000+32002)

=1(1+32+34)+36(1+32+34)+...+31998(1+32+34)

=1.91+36.91+...+31998.91

Mà 91\(⋮\)7 nên 1.91+36.91+...+31998.91\(⋮\)7

\(\Rightarrow S⋮7\)(đpcm)

a) S=30+32+34+36+.....+32002

=>32S=32+34+36+.....+32002+32004

=>9S-S=(32+34+36+.....+32002+32004)-(30+32+34+36+.....+32002)

=>8S=32004 - 1

=>S=(32004 - 1) / 8

b) S= 30+32+34+36+.....+32002

S=(30+32+34)+(36+38+310)+.....+(31998+32000+32002)

S=91+36(30+32+34)+.....+31998(30+32+34)

S=91.1+36.91+....+31998.91

S=91(1+36+....+31998) chia  hết cho 7

=>S chia hết cho 7

  Câu a mk ko chắc làm đúng ko nữa