Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:
\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1998}\)
\(=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+...+\left(\frac{1}{999}+\frac{1}{1000}\right)\)
\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+...+\frac{1999}{999.100}\)
Quy đồng phân số, ta chọn Mẫu chung la : 1 x 2 x 3 x 4 x ... x 1997 x 1998
Gọi các thừa số phụ tương ứng là a1, a2, a3, ..., a999
\(\frac{m}{n}=\frac{1999\left(a1+a2+a3+...+a999\right)}{1.2.3.4.....1997.1998}\)
Do 1999 là số nguyên tố. Sau khi rút gọn vẫn còn thừa số 1999 suy ra m chia hết cho 1999

\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1996}+\frac{1}{1997}+\frac{1}{1998}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+...+\left(\frac{1}{999}+\frac{1}{1000}\right)\)
\(=\frac{1999}{1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+...+\frac{1999}{999.1000}=1999.\left(\frac{1}{1998}+\frac{1}{2.1997}+...+\frac{1}{999.1000}\right)⋮1999\)
\(\Rightarrow\frac{m}{n}⋮1999\Rightarrow m⋮1999\)
BTTQ: Nếu \(\frac{m}{n}=1+\frac{1}{2}+...+\frac{1}{k}\left(k\inℕ^∗\right)\)thì m\(⋮\left(k+1\right)\)
Ta có : \(\frac{m}{n}\)= \(1+\frac{1}{2}+...+\frac{1}{1998}\)
= ( 1 + 1/1998 ) + ( 1/2 + 1/1997 ) + ... + ( 1/99 + 1/1000 )
= \(\frac{1999}{1998}+\frac{1999}{2.1997}+...+\frac{1999}{999.1000}\)
= \(\frac{1999.\left(a_1+a_2+...+a_{1999}\right)}{1.2.3....1998}\)( a1 ; a2 ; ... là các thừa số phụ tương ứng của các phân số )
= \(\frac{1999.\left(a_1+a_2+...+a_{1999}\right)}{1.2.3....1998}\)=> tử \(⋮\)1999
Vì 1999 là số nguyên tố mà n k có thừa số 1999 => n ko chia hết cho 1999 . Dù rút gọn về phân số tối giản thì tử \(⋮\)1999 hay m \(⋮\)1999
Do đó dạng tổng quát là :
m/n = 1 + 1/2 + 1/3 + ... + 1/k => m \(⋮\)k ( k thuộc N* )

ta có:\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1998}\)
\(=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+...+\left(\frac{1}{999}+\frac{1}{1000}\right)\)
\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+...+\frac{1999}{999.1000}\)
quy đồng phân số,ta chọn MC:1.2.3...1997.1998
gọi các thừa số phụ tương ứng là a1,a2,...,a999
\(\frac{m}{n}=1999\left(\frac{a_1+a_2+...+a_{999}}{1.2.3....1997.1998}\right)\)
do 1999 là số nguyên tố.sau khi rút gọn vẫn còn thừa số 1999
=>m chia hết 1999 (đpcm)

Câu 1:
a: \(A=\dfrac{1}{2}\left(\dfrac{4}{11\cdot15}+\dfrac{4}{15\cdot19}+...+\dfrac{4}{51\cdot55}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+...+\dfrac{1}{51}-\dfrac{1}{55}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{4}{55}=\dfrac{2}{55}\)
\(B=\dfrac{-5}{3}\cdot\dfrac{11}{2}\cdot\dfrac{4}{3}=\dfrac{-220}{18}=\dfrac{-110}{9}\)
\(A\cdot B=\dfrac{2}{55}\cdot\dfrac{-110}{9}=\dfrac{-4}{9}\)
Câu 2:
a: |3-x|=x-5
=>|x-3|=x-5
\(\Leftrightarrow\left\{{}\begin{matrix}x>=5\\\left(x-5-x+3\right)\left(x-5+x-3\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Câu 1:
Đặt: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}\)
\(=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+....+\frac{1}{100.100}\)
\(A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow A< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
Vậy:.............
Câu 2:
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{98}+1\right)\left(\frac{1}{99}+1\right)\)
\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{98}+\frac{98}{98}\right)\left(\frac{1}{99}+\frac{99}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{99}{98}.\frac{100}{99}\)
\(=\frac{3.4.5....99.100}{2.3.4...98.99}\)
\(=\frac{100}{2}=50\)

Bài 1:
a) \(\frac{a}{5}=\frac{-3}{b}\)
\(\Rightarrow ab=-15\)
Ta có bảng sau:
a | 1 | -1 | 15 | -15 |
b | -15 | 15 | -1 | 1 |
Vậy cặp số \(\left(a;b\right)\) là \(\left(1;-15\right);\left(-1;15\right);\left(15;-1\right);\left(-15;1\right)\)
b) @Nguyễn Huy Thắng
Bài 2:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\left\{\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\left(đpcm\right)\)
Vậy a = b = c

Bài 2: chia 10n cho 5n-3 như bình thường ta được dư là 6
Để A có giá trị nguyên thì \(10n⋮5n-3\) Do đó 6 phai chia hết cho 3n+2
<= >5n-3\(\in u\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\\)
Lập bảng
5n-3= | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n= | -0.6 | 0 | 0.2 | 0.4 | 0.8 | 1 | 1.2 | 1.8 |
Dưới đây là lời giải chi tiết cho hai bài toán bạn hỏi:
Bài 1: Tìm số nguyên \(n\) để biểu thức
\(\frac{2 n - 1}{3 n + 2}\)rút gọn được.
Phân tích:
Một phân số có thể rút gọn được khi tử số và mẫu số có ước chung lớn hơn 1.
Vậy ta cần tìm số nguyên \(n\) sao cho:
\(gcd \left(\right. 2 n - 1 , 3 n + 2 \left.\right) > 1\)Giải:
Gọi \(d = gcd \left(\right. 2 n - 1 , 3 n + 2 \left.\right)\), \(d > 1\).
Vì \(d \mid \left(\right. 2 n - 1 \left.\right)\) và \(d \mid \left(\right. 3 n + 2 \left.\right)\), nên \(d\) cũng chia được các tổ hợp tuyến tính của chúng:
\(d \mid \left(\right. 3 \times \left(\right. 2 n - 1 \left.\right) \left.\right) = 6 n - 3\) \(d \mid \left(\right. 2 \times \left(\right. 3 n + 2 \left.\right) \left.\right) = 6 n + 4\)Do đó,
\(d \mid \left(\right. \left(\right. 6 n + 4 \left.\right) - \left(\right. 6 n - 3 \left.\right) \left.\right) = 7\)Vậy \(d \mid 7\).
Vì \(d > 1\), nên \(d = 7\).
Điều kiện:
\(7 \mid \left(\right. 2 n - 1 \left.\right) \text{v} \overset{ˋ}{\text{a}} 7 \mid \left(\right. 3 n + 2 \left.\right)\)Tức là:
\(2 n - 1 \equiv 0 \left(\right. m o d 7 \left.\right) \Rightarrow 2 n \equiv 1 \left(\right. m o d 7 \left.\right)\) \(3 n + 2 \equiv 0 \left(\right. m o d 7 \left.\right) \Rightarrow 3 n \equiv - 2 \equiv 5 \left(\right. m o d 7 \left.\right)\)Giải từng phương trình modulo 7:
- \(2 n \equiv 1 \left(\right. m o d 7 \left.\right)\)
Nhân hai vế với nghịch đảo của 2 modulo 7. Vì \(2 \times 4 = 8 \equiv 1 \left(\right. m o d 7 \left.\right)\), nên nghịch đảo của 2 là 4.
\(n \equiv 4 \times 1 = 4 \left(\right. m o d 7 \left.\right)\)- \(3 n \equiv 5 \left(\right. m o d 7 \left.\right)\)
Nghịch đảo của 3 modulo 7 là 5 vì \(3 \times 5 = 15 \equiv 1 \left(\right. m o d 7 \left.\right)\)
\(n \equiv 5 \times 5 = 25 \equiv 4 \left(\right. m o d 7 \left.\right)\)Kết luận:
Cả hai điều kiện đều yêu cầu:
\(n \equiv 4 \left(\right. m o d 7 \left.\right)\)Vậy các số nguyên \(n\) thỏa mãn là:
\(n = 7 k + 4 , k \in \mathbb{Z}\)Bài 2: Cho
\(A = \frac{10 n}{5 n - 3} , n \in \mathbb{Z}\)a) Tìm \(n\) để \(A\) có giá trị nguyên
Điều kiện:
- Mẫu số khác 0:
- \(A\) là số nguyên \(\Rightarrow 5 n - 3 \mid 10 n\)
Phân tích:
Giả sử \(d = 5 n - 3\), ta cần \(d \mid 10 n\).
Ta có:
\(d = 5 n - 3 \Rightarrow 5 n = d + 3\)Thay vào biểu thức \(10 n = 2 \times 5 n = 2 \left(\right. d + 3 \left.\right) = 2 d + 6\).
Vì \(d \mid 10 n\), tức là \(d \mid 2 d + 6\).
Mà \(d \mid 2 d\) nên \(d \mid 6\).
Tóm lại:
\(5 n - 3 = d \mid 6\)Vậy \(5 n - 3\) là ước của 6.
Các ước của 6 là: \(\pm 1 , \pm 2 , \pm 3 , \pm 6\).
Tìm \(n\) ứng với từng giá trị:
- \(5 n - 3 = 1 \Rightarrow 5 n = 4 \Rightarrow n = \frac{4}{5}\) (không nguyên)
- \(5 n - 3 = - 1 \Rightarrow 5 n = 2 \Rightarrow n = \frac{2}{5}\) (không nguyên)
- \(5 n - 3 = 2 \Rightarrow 5 n = 5 \Rightarrow n = 1\) (nguyên)
- \(5 n - 3 = - 2 \Rightarrow 5 n = 1 \Rightarrow n = \frac{1}{5}\) (không nguyên)
- \(5 n - 3 = 3 \Rightarrow 5 n = 6 \Rightarrow n = \frac{6}{5}\) (không nguyên)
- \(5 n - 3 = - 3 \Rightarrow 5 n = 0 \Rightarrow n = 0\) (nguyên)
- \(5 n - 3 = 6 \Rightarrow 5 n = 9 \Rightarrow n = \frac{9}{5}\) (không nguyên)
- \(5 n - 3 = - 6 \Rightarrow 5 n = - 3 \Rightarrow n = - \frac{3}{5}\) (không nguyên)
Vậy các giá trị nguyên \(n\) thỏa mãn là:
\(n = 0 , n = 1\)Kiểm tra giá trị \(A\):
- Với \(n = 0\):
- Với \(n = 1\):
b) Tìm giá trị lớn nhất của \(A\)
Ta xét hàm số:
\(A \left(\right. n \left.\right) = \frac{10 n}{5 n - 3}\)với \(n \in \mathbb{Z}\), \(n \neq \frac{3}{5}\).
Phân tích:
- Khi \(n \rightarrow + \infty\), \(A \left(\right. n \left.\right) \rightarrow \frac{10 n}{5 n} = 2\)
- Khi \(n \rightarrow - \infty\), \(A \left(\right. n \left.\right) \rightarrow 2\)
Tính giá trị \(A \left(\right. n \left.\right)\) tại một số \(n\) nguyên:
\(n\)nnn | \(A \left(\right. n \left.\right) = \frac{10 n}{5 n - 3}\)A(n)=10n5n−3A(n) = \frac{10n}{5n - 3}A(n)=5n−310n | Giá trị |
---|---|---|
0 | 0 | 0 |
1 | \(\frac{10}{2} = 5\)102=5\frac{10}{2} = 5210=5 | 5 |
2 | \(\frac{20}{7} \approx 2.86\)207≈2.86\frac{20}{7} \approx 2.86720≈2.86 | 2.86 |
3 | \(\frac{30}{12} = 2.5\)3012=2.5\frac{30}{12} = 2.51230=2.5 | 2.5 |
4 | \(\frac{40}{17} \approx 2.35\)4017≈2.35\frac{40}{17} \approx 2.351740≈2.35 ... |
\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{1998}\).Từ 1 đến 1998 có 1998 số. Nên vế phải có 1998 số hạng nên ta ghép thành 999 cặp như sau :
\(\frac{m}{n}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+.....+\left(\frac{1}{999}+\frac{1}{1000}\right)\)\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+.......+\frac{1999}{999.1000}\)
Quy đồng tất cả 999 phân số này ta được:
\(\frac{m}{n}=\frac{1999a_1+1999a_2+1999a_3+........+1999a_{997}+1999a_{9998}+1999a_{999}}{1.2.3.4.5.6.7.8.9..........1996.1997.1998}\)
Với \(a_1;a_2;a_3;...;a_{998};a_{999}\in N\)
\(\frac{m}{n}=\frac{1999.\left(a_1+a_2+a_3+.......+a_{997}+a_{998}+a_{999}\right)}{1.2.3...............1996.1997.1998}\)
Vì 1999 là số nguyên tố.Nên sau khi rút gọn,đưa về dạng phân số tối giản thì từ số vẫn còn thừa số 1999.
\(\Rightarrow m⋮1999\)