Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:
Đặt \(\left(\frac{x}{y}; \frac{y}{z}; \frac{z}{x}\right)=(a,b,c)\Rightarrow abc=1\)
Khi đó:
\(A^2+B^2+C^2-ABC=(b+\frac{1}{b})^2+(c+\frac{1}{c})^2+(a+\frac{1}{a})^2-(a+\frac{1}{a})(b+\frac{1}{b})(c+\frac{1}{c})\)
\(=b^2+\frac{1}{b^2}+2+c^2+\frac{1}{c^2}+2+a^2+\frac{1}{a^2}+2-(ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab})(c+\frac{1}{c})\)
\(a^2+b^2+c^2+(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})+6-[abc+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)+\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)+\frac{1}{abc}]\)
\(=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+6-[1+\left(\frac{abc}{c^2}+\frac{abc}{a^2}+\frac{abc}{b^2}\right)+\left(\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}\right)+1]\)
\(=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+6-[1+(\frac{1}{c^2}+\frac{1}{b^2}+\frac{1}{a^2})+(a^2+b^2+c^2)+1]\)
\(=4\)
Câu 2:
Ta có:
\(xy+yz+xz+2xyz=\frac{ab}{(b+c)(c+a)}+\frac{bc}{(c+a)(a+b)}+\frac{ac}{(b+c)(a+b)}+\frac{2abc}{(a+b)(b+c)(c+a)}\)
\(=\frac{ab(a+b)}{(a+b)(b+c)(c+a)}+\frac{bc(b+c)}{(a+b)(b+c)(c+a)}+\frac{ac(a+c)}{(a+b)(b+c)(c+a)}+\frac{2abc}{(a+b)(b+c)(c+a)}\)
\(=\frac{ab(a+b)+bc(b+c)+ca(c+a)+2abc}{(a+b)(b+c)(c+a)}\)
\(=\frac{ab(a+b+c)+bc(b+c+a)+ca(c+a)}{(a+b)(b+c)(c+a)}\)
\(=\frac{(a+b+c)(ab+bc)+ac(a+c)}{(a+b)(b+c)(c+a)}=\frac{(c+a)b(a+b+c)+ac(a+c)}{(a+b)(b+c)(c+a)}\)
\(=\frac{(a+c)[b(a+b+c)+ac]}{(a+b)(b+c)(c+a)}=\frac{(a+c)[b(a+b)+c(a+b)]}{(a+b)(b+c)(c+a)}\)
\(=\frac{(a+c)(b+c)(a+b)}{(a+b)(b+c)(c+a)}=1\)

Bài 1 rút gọn bc tự làm :
\(B=\dfrac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\dfrac{3x^3-3y^2-4y^2+4y+y-1}{2y^3-2y^2+y^2-y+3y-3}\)
\(B=\dfrac{3y^2\left(y-1\right)-4y\left(y-1\right)+\left(y-1\right)}{2y^2\left(y-1\right)+y\left(y-1\right)-3\left(y-1\right)}\)
\(B=\dfrac{\left(3y^2-4y+1\right)\left(y-1\right)}{\left(2y^2+y-3\right)\left(y-1\right)}\)
\(B=\dfrac{3y^2-3y-y+1}{2y^2-2y+3y-3}=\dfrac{3y\left(y-1\right)-\left(y-1\right)}{2y\left(y-1\right)+3\left(y-1\right)}\)
\(B=\dfrac{\left(3y-1\right)\left(y-1\right)}{\left(3y+2\right)\left(y-1\right)}=\dfrac{3y-1}{3y+2}\)
Bài 2 )
a ) \(x+\dfrac{1}{x}=3\)
\(\Leftrightarrow x^2+2x\dfrac{1}{x}+\dfrac{1}{x^2}=9\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}=1\)
b ) \(\left(x+\dfrac{1}{x}\right)^3=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+\dfrac{3}{x}+3x=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3\left(\dfrac{1}{x}+x\right)=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)

\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)
\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)
c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)
Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)
\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)

2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\) và \(VP=\left(ax+by\right)^2\)
tính hiệu của cả VT và VP
suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)
vì \(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)
3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)
biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0
\(\Rightarrow\) Đpcm

Câu 1:
\(\text{a) }\dfrac{x^2-xy}{3xy-3y^2}=\dfrac{x\left(x-y\right)}{3y\left(x-y\right)}=\dfrac{x}{3y}\)
\(\text{b) }\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\\ =\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\\ =\dfrac{2a\left(x-1\right)^2}{5b\left(1-x\right)\left(1+x\right)}\\ =-\dfrac{2a\left(x-1\right)^2}{5b\left(x-1\right)\left(1+x\right)}\\ =-\dfrac{2a\left(x-1\right)}{5b\left(x+1\right)}\\ =-\dfrac{2ax-2a}{5bx+5b}\)
\(\text{c) }\dfrac{4x^2-4xy}{5x^3-5x^2y}=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)
\(\text{d) }\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)
\(\text{e) }\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\\ =\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\\ =\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x+y\right)^3}\\ =\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\\ =\dfrac{x^3+y^3}{x^4-xy^3}\)
Câu 3:
\(\text{ a) }\dfrac{\left(a+b\right)^2-c^2}{a+b+c}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)
\(\text{b) }\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\\ =\dfrac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}\\ =\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\\ =\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}\\ =\dfrac{a+b-c}{a-b+c}\)
\(\text{c) }\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\\ =\dfrac{2x^3-x^2-6x^2+3x-15x+45}{3x^3-10x^2-9x^2+3x+30x-9}\\ =\dfrac{\left(2x^3-x^2-15x\right)-\left(6x^2-3x-45\right)}{\left(3x^3-10x^2+3x\right)-\left(9x^2-30x+9\right)}\\ =\dfrac{x\left(2x^2-x-15\right)-3\left(2x^2-x-15\right)}{x\left(3x^2-10x+3\right)-3\left(3x^2-10x+3\right)}\\ =\dfrac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\\ =\dfrac{\left(x-3\right)\left(2x^2-6x+5x-15\right)}{\left(x-3\right)\left(3x^2-9x-x+3\right)}\\ =\dfrac{\left(x-3\right)\left[\left(2x^2-6x\right)+\left(5x-15\right)\right]}{\left(x-3\right)\left[\left(3x^2-9x\right)-\left(x-3\right)\right]}\\ =\dfrac{\left(x-3\right)\left[x\left(x-3\right)+5\left(x-3\right)\right]}{\left(x-3\right)\left[3x\left(x-3\right)-\left(x-3\right)\right]}\\ =\dfrac{\left(x-3\right)\left(x-3\right)\left(x+5\right)}{\left(x-3\right)\left(x-3\right)\left(3x-1\right)}\\ =\dfrac{x+5}{3x-1}\)

\(\frac{x^2-3x+2}{x^3-1}=\frac{x^2-2x-x+2}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\frac{x.\left(x-2\right)-\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{\left(x-1\right).\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\frac{x-2}{x^2+x+1}\)
Lời giải:
\(a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z}\)
\(A=\frac{\frac{1}{x^2y^2}}{(\frac{1}{x^3}+\frac{1}{y^3}).\frac{1}{z^2}}=\frac{z^2}{x^2y^2.\frac{x^3+y^3}{x^3y^3}}=\frac{z^2}{\frac{x^3+y^3}{xy}}=\frac{xyz^2}{x^3+y^3}\)