\(\widehat{B}+\widehat{D}\)= 180 độ, CB = CD. Chứng minh AC là t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

ta có : \(\widehat{A}+\widehat{B}=180\)=>  AD // BC ( 2 góc trong cùng phía có tổng 180)  => ABCD là hình thang

mặt khác: CB=CD => ABCD là hình bình hành ( hình thang có 2 cạnh kề bằng nhau là hình bình hành)

Dễ thấy AC là đường chéo của ABCD =>  AC là tia phân giác của \(\widehat{A}\)(đường chéo của hình bình hành là tia pg của 2 đỉnh )

8 tháng 8 2020

hình như sai đề bn ạ

ko ra đủ dữ liệu

16 tháng 6 2018

a) có góc B + góc ADC = 180 độ

góc ADC + hóc EDC = 180 độ 

=> góc B = góc EDC 

xét tam giác ABC và tam giác EDC có 

AB=ED( gt)

góc B = góc EDC (cmt)

CB=CD(gt)

=> tam giác ABC = tam giác EDC (c.g.c)

4 tháng 7 2019

A B C D E

Trên đường thẳng AB lấy điểm E sao cho AE=AD

Xét tam giác AEC và tam giác ADC có: 

AD=AE

^DAC=^EAC ( AC là phân giác ^BAD)

AC chung

=> Tam giác AEC = tam gác ADC

=>^ADC=^AEC (1)

và EC=CD

mà DC=BC

=> EC=BC

=> Tam giác EBC cân tại C

=> ^CEB=^CBE (2) 

Mà ^AEC+^CEB =180^o (3)

Từ (1), (2) , (3) => góc ADC + góc CBE =180^o

4 tháng 7 2019

Chị ơi, mình không cminh đc \(\widehat{B}=\widehat{D}\)ạ?

13 tháng 9

Tứ giác \(A B C D\)\(\hat{A} - \hat{B} = 50^{\circ}\). Các tia phân giác của \(\hat{C} , \hat{D}\) cắt nhau tại \(I\). Tính \(\hat{A} , \hat{B}\).

  • Gọi \(\hat{A} = a , \textrm{ }\textrm{ } \hat{B} = b , \textrm{ }\textrm{ } \hat{C} = c , \textrm{ }\textrm{ } \hat{D} = d\).
  • Ta có: \(a - b = 50^{\circ}\).
  • Trong tứ giác: \(a + b + c + d = 360^{\circ}\).
  • \(I\) là giao điểm phân giác \(\hat{C} , \hat{D}\) nên:
    \(\hat{C I D} = \frac{1}{2} \left(\right. c + d \left.\right)\).
  • \(\hat{C I D} = 90^{\circ} \Rightarrow c + d = 180^{\circ}\).
  • Thay vào: \(a + b = 180^{\circ}\).
  • Giải hệ:

a+b=180∘
a−b=50∘​  
⇒a=115∘,b=65∘.\(\)

Đáp số: \(\hat{A} = 115^{\circ} , \textrm{ }\textrm{ } \hat{B} = 65^{\circ}\).
xin tick. cảm ơnnn