K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

Chọn D

4 tháng 3 2015

* Hướng dẫn câu b:

Gọi I là giao điểm của Gx và PQ. Kéo dài PQ cắt hai cạnh AD và BC theo thứ tự là E và F.

Góc MPQ = góc GEF (so le trong do MP // AD)

Góc MQP = góc GFE (so le trong do MQ // BC)

góc MPQ = góc MQP (tam giác MPQ cân do MP = MQ)

=> góc GEF = góc GEF -> tam giác GEF cân tại G

mà GI là phân giác của góc G -> GI vuông góc với EF

-> Gx vuông góc với PQ -> Gx // MN (MN vuông góc với PQ do hình thoi có 2 đường chéo vuông góc).

5 tháng 11 2017

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

Ví dụ :

B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}

Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: ta có: DEBF là hình bình hành

nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)

Ta có:ABCD là hình bình hành

nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra BD,EF,AC đồng quy

21 tháng 12 2018

giúp mình với sắp thi rồi

30 tháng 8

Hướng chung (các bước thường dùng)

  1. Xác định các tam giác vuông: Tìm các tam giác có một cạnh là nửa đường chéo, là trung tuyến, hoặc là một đường thẳng vuông góc được cho — dùng tính chất vuông/góc 45° (trong hình vuông) để kết luận các góc bằng nhau.
  2. Chứng minh 3 góc vuông của tứ giác \(E F G H\):
    • Nếu bạn tìm được ba nghiệm của dạng “hai đoạn thẳng giao nhau vuông góc” tại ba đỉnh khác nhau, ghi lại lý do (ví dụ: hai đường là tiếp tuyến với cùng một đường tròn, hoặc là hai đường thẳng lần lượt song song/vuông góc với hai cạnh vuông góc của \(A B C D\)).
    • Dùng quan hệ góc trong tam giác (tổng góc = \(180^{\circ}\)) để suy ra góc thứ tư nếu cần.
  3. Chứng minh \(H E = H G\): So sánh hai tam giác có chung cạnh/đồng dạng/đồng cạnh — thường dùng: nếu hai tam giác cân (có hai góc bằng nhau) hoặc đường trung trực, hoặc tia phân giác, thì hai cạnh tương ứng bằng nhau.
  4. Chứng minh \(A B C D\) là hình vuông (nếu chưa biết):
    • Nếu biết \(A B \parallel C D\)\(B C \parallel A D\) cộng thêm \(A B = B C\) hoặc một góc vuông, suy ra là hình chữ nhật có hai cạnh bằng → hình vuông.
    • Hoặc chứng minh 4 góc đều \(90^{\circ}\) (qua tính song song/vuông góc) và một cặp cạnh bằng độ dài → hình vuông.

Ví dụ mẫu (nếu \(E , F , G , H\)trung điểm các cạnh lần lượt của \(A B , B C , C D , D A\))

  • a) Tứ giác \(E F G H\) là hình vuông (thế nên có 4 góc vuông chứ không phải chỉ 3): vì \(E F \parallel A D\)\(F G \parallel A B\) nên \(E F \bot F G\), v.v.
  • b) \(H E = H G\): do đối xứng theo tâm hình vuông (các đoạn nối tâm đến các trung điểm bằng nhau).
  • c) \(A B C D\) là hình vuông: đây là giả thiết trong ví dụ này.