Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cho tứ giác ABCD có AD=BC.Gọi M;N;P;Q lần lượt là trung điểm các cạnh AB,AC,DC và BD.
a,Chứng minh tứ giác MNPQ là hình thoi
b, Biết góc D=50 độ,góc C=70độ . Chứng minh góc QPN=60 độ và QN=1/2 AD
c,Đường thẳng MP cắt các đường thẳng DA tại E và CB tại F.Chứng minh góc DEP = góc CFP

Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân

Từ \(A B = B C\) ⇒ Tam giác \(A B C\) cân tại \(B\)
Từ \(C D = D A\) ⇒ Tam giác \(C D A\) cân tại \(D\)
Gọi \(B D\) cắt \(A C\) tại \(O\)
Cần chứng minh:
- \(O\) là trung điểm của \(A C\)
- \(B D \bot A C\)
- Xét hai tam giác \(A B C\) và \(C D A\):
- Từ \(A B = B C\) ⇒ \(\angle B A C = \angle B C A\)
- Từ \(C D = D A\) ⇒ \(\angle D C A = \angle D A C\)
Nếu 2 tam giác \(A B C\) và \(C D A\) xếp đối xứng nhau qua đường chéo \(B D\), thì các cặp đỉnh tương ứng đối xứng qua \(B D\), nghĩa là:
- \(A\) và \(C\) đối xứng nhau qua \(B D\)
- Do đó, \(B D\) là trung trực của đoạn \(A C\)
- Tổng 4 góc trong tứ giác:
\(\angle A + \angle B + \angle C + \angle D = 360^{\circ} \Rightarrow \angle A + \angle C = 360^{\circ} - \left(\right. 100^{\circ} + 80^{\circ} \left.\right) = 180^{\circ}\)
Mặt khác:
- Tam giác \(A B C\) cân tại \(B\) ⇒ \(\angle A = \angle C\)
- Hoặc tam giác \(C D A\) cân tại \(D\) ⇒ \(\angle A = \angle C\)
⇒ \(\angle A = \angle C\)
⇒ \(\angle A + \angle C = 180^{\circ} \Rightarrow 2 \angle A = 180^{\circ} \Rightarrow \angle A = \angle C = \boxed{90^{\circ}}\)

a: BA=BC
DC=DA
=>BD là trung trực của AC
b: Xét ΔBAD và ΔBCD có
BA=BC
DA=DC
BD chung
=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=(360-100-80)/2=90 độ