Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có hình vẽ : A B C D H K o
Dễ thấy SABCD = \(\frac{1}{2}\left(AH+CK\right).BD\)
mà lại có \(AH=AO.sin\alpha\) ; \(CK=OC.sin\alpha\)
=> SABCD = \(\frac{1}{2}\sin\alpha.AC.BD\)
Khi 2 đường chéo vuông góc với nhau thì
\(H\equiv O\equiv K\Rightarrow AH=AO=CK\)
hay \(sin\alpha=1\)
Khi đó \(S_{ABCD}=\frac{1}{2}mn\)(đpcm)

Làm như sau :
Kẻ AH vg BD ; CK vg BD
Sabd = 1/2.AH.BD (1)
Sbcd = 1/2.CK.BD (2)
từ (1) và (2) => Sabcd= Sabd + Sbcd = 1/2BD ( AH+CK) (*)
Tam giác AHO vuông tại H , theo tỉ số lượng giác giữa cạnh và góc
=> AH = OA . sin AOH (3)
Tương tự CK = OC.sin BOC (4)
Mà BOC = AOH => sin BOC = sin AOH (5)
Từ (3) và (4) và (5) => AH + CK = sin AOH ( OA + OC ) = AC .sin AOH (**)
Từ (*) và (**) => cái cần phải CM

\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{1}{cosa}\left(cosa-sina\right)}{\frac{1}{cosa}\left(cosa+sina\right)}=\frac{cosa-sina}{cosa+sina}\)

vì mình không vẽ được hình nên các bạn vẽ hình của bạn nhé
đặt tên : tam giác ABC, AB= a , AC= b , GÓC BAC là \(\alpha\) , kẻ BH vuông góc với AC
tam giác ABH vuông tại H \(\Rightarrow\) \(\sin\alpha\) = \(\frac{BH}{AB}\) \(\Rightarrow\) BH = sin\(\alpha\).AB
có \(s_{ABC}\) = \(\frac{1}{2}BH.AC\)
MÀ BH = sin \(\alpha\) . AB \(\Rightarrow\) S \(_{ABC}\) =\(\frac{1}{2}sin\alpha.AB.AC\) = \(\frac{1}{2}a.b.sin\alpha\) \(\Rightarrow\)đpcm

Cho hình bình hành ABCD có góc A nhọn (AB<AD) Tia phân giác BAD cắt BC tại M và cắt DC tại N Gọi K là tâm đường tròn ngoại tiếp tam giác MCN
a) C/m: DN=BC và CK vuông góc MN
Do ∡A nhọn và AB < AD nên tia phân giác ∡A cắt
BC tại M∊đoạn BC và N ngoài đoạn DC ( C nằm giữa D,N)
∡BAM = ∡MAD (AM là pg) và ∡BAN = ∡DNA (sl trong)
→∡DAN = ∡DNA → ∆ADN cân đỉnh D → DN = AD = BC
Xét ∆MCN có ∡DAN = ∡DNA ( cm trên) ,
∡DAN = ∡CMN ( đồng vị) →∡CNM = ∡CMN
→ ∆MCN cân đỉnh C → K thuộc trung trực MN
→ CK vuông góc MN
b) C/m BKCD nội tiếp
Gọi E là trung điểm MC, F là trung điểm CN ta có :
KE vuông góc MC, KF vuông góc CN , BE = DF
xét ∆KEC và ∆KFC là 2 ∆ vuông có CK chung,
∡ECK = ∡FCK ( ∆MCN tại C và CK là trung trực, pg...)
→ ∆KEC = ∆KFC → EK = FK
xét hai tam giác vuông ∆KEB và ∆KFD có BE = DF (cm trên)
KE = KF (cm trên) → ∆KEB = ∆KFD →∡KBE = ∡KDF
hay ∡KBC = ∡KDC . B và D cùng phía so với đường thẳng
CK mà ∡KBC = ∡KDC → B, C, D, K thuộc đường tròn
( quỹ tích cung chứa góc ) → BKCD nội tiếp
bức tranh được UNESCO công nhận là bức tranh đẹp nhất thế giới. Có 1 0 2
Giả sử hai đường chéo AC, BD cắt nhau tại I, ∠ (AIB) = α là góc nhọn (xem h.bs.9)
Kẻ đường cao AH của tam giác ABD và đường cao CK của tam giác CBD.
Ta có: AH = AI.sin α , CK = CI.sin α
Diện tích tam giác ABD là S A B D = 1/2 BD.AH.
Diện tích tam giác CBD là S C B D = 1/2 BD.CK.
Từ đó diện tích S của tứ giác ABCD là:
S = S A B D + S C B D = 1/2BD.(AH + CK)
= 1/2 BD.(AI + CI)sin α = 1/2BD.AC.sin α