Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I A B C D
Gọi I là trung điểm của AC ( IA = IC )
+) Xét tam giác vuông BAC ( ^B = 90^o )
BI là đường tuyến
\(\Rightarrow BI=\frac{1}{2}AC\)
\(\Rightarrow BI=IA=IC\left(1\right)\)
+) Xét tam giác vuông DAC ( ^D = 90^o )
DI là đường trung tuyến \(\Rightarrow DI=\frac{1}{2}AC\)
\(\Rightarrow DI=IA=IC\left(2\right)\)
Từ (1) và (2) => IA = IB = IC = ID
Vậy 4 điểm A , B , C , D cùng thuộc 1 đường tròn
b) Nối B với D
Xét tam giác BDI : Ta có : BI + I > BD
( bđt tam giác )
Mà BI + ID = AC
Vậy AC > BD

Ta có: \(\hat{BAC}=90^0\)
=>A nằm trên đường tròn đường kính BC(1)
Ta có: \(\hat{BDC}=90^0\)
=>D nằm trên đường tròn đường kính BC(2)
Từ (1),(2) suy ra A,D cùng nằm trên đường tròn đường kính BC
=>A,B,C,D cùng thuộc một đường tròn
Gọi O là trung điểm của BC
=>O là tâm đường tròn đường kính BC
Xét (O) có
BC là đường kính
AD là dây
Do đó: AD<BC