Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Chọn mp(ACD) có chứa MN
Trong mp(BCD), gọi K là giao điểm của BO và CD
K∈BO⊂(ABO)
K∈CD⊂(ACD)
Do đó: K∈(ABO) giao (ACD)(1)
ta có: A∈(ABO)
A∈(ACD)
Do đó: A∈(ABO) giao (ACD)(2)
Từ (1),(2) suy ra (ABO) giao (ACD)=AK
Gọi H là giao điểm của AK và MN
=>H là giao điểm của MN và (BAO)
b: Chọn mp(ABK) có chứa AO
H∈AK⊂(ABK)
H∈MN⊂(BMN)
Do đó: H∈(ABK) giao (BMN)(3)
Ta có: B∈(ABK)
B∈(BMN)
Do đó: B∈(ABK) giao (BMN)(4)
Từ (3),(4) suy ra (ABK) giao (BMN)=BH
Gọi I là giao điểm của BH và AO
=>I là giao điểm của AO và mp(BMN)

a: Xét ΔAMB có ME là đường phân giác
nên AE/EB=AM/MB=AM/MC(4)
XétΔAMC có MD là đường phân giác
nên AD/DC=AM/MC(5)
Từ (4) và (5) suy ra AE/EB=AD/DC
b: Xét ΔABC có
AE/EB=AD/DC
nên ED//BC
Xét ΔABM có EI//BM
nên EI/BM=AE/AB(1)
Xét ΔACM có ID//MC
nên ID/MC=AD/AC(2)
Xét ΔABC có
ED//BC
nên AE/AB=AD/AC(3)
Từ (1), (2) và (3) suy ra EI/BM=DI/MC
mà BM=CM
nên EI=DI
hay I là trung điểm của ED
Đáp án B
Xét (MNK) và (ABD) có:
N là điểm chung
AB // MK ⇒ A B ⫽ M N K
⇒ Giao tuyến của 2 mặt phẳng là đường thẳng d đi qua N và song song AB
d cắt AB tại điểm F cần tìm
Vì FN // AB ( cách dựng)