K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8

ủa bạn B vuông góc với AC hả

19 giờ trước (9:34)

Lời giải

Gọi tọa độ và thiết lập hệ trục:
Để chứng minh nhanh và chặt chẽ, đặt hệ trục sao cho \(A C\) trùng trục hoành.
Gọi \(A \left(\right. 0 , 0 \left.\right)\), \(C \left(\right. c , 0 \left.\right)\) với \(c \neq 0\). Gọi \(B \left(\right. b_{x} , b_{y} \left.\right)\) với \(b_{y} \neq 0\).

Từ giả thiết:

  • Đường qua \(A\) vuông góc với \(A C\) là trục tung nên đường \(a\) có phương trình \(x = 0\).
  • Đường qua \(B\) song song với \(A C\) là đường ngang \(y = b_{y}\).
    Do đó \(M\), giao của hai đường này, có toạ độ \(M \left(\right. 0 , b_{y} \left.\right)\).

Trung điểm \(I\) của \(A B\) có toạ độ

\(I \left(\right. \frac{b_{x}}{2} , \frac{b_{y}}{2} \left.\right) .\)

Phương trình đường \(M I\). Hệ số góc

\(m_{M I} = \frac{\frac{b_{y}}{2} - b_{y}}{\frac{b_{x}}{2} - 0} = \frac{- \frac{b_{y}}{2}}{\frac{b_{x}}{2}} = - \frac{b_{y}}{b_{x}} .\)

Do đó phương trình \(M I\)

\(y = b_{y} - \frac{b_{y}}{b_{x}} x .\)

Giao \(N\) của \(M I\) với \(A C\) (với \(A C : \textrm{ }\textrm{ } y = 0\)) thỏa

\(0 = b_{y} - \frac{b_{y}}{b_{x}} x \Rightarrow x = b_{x} .\)

Vậy \(N \left(\right. b_{x} , 0 \left.\right)\).

Đường \(B N\) là đường thẳng đi qua \(B \left(\right. b_{x} , b_{y} \left.\right)\)\(N \left(\right. b_{x} , 0 \left.\right)\), tức phương trình \(x = b_{x}\) (đường thẳng đứng).

Đường cao \(A H\) đi qua \(A \left(\right. 0 , 0 \left.\right)\) và vuông góc với \(B C\). Hệ số góc của \(B C\)

\(m_{B C} = \frac{b_{y} - 0}{b_{x} - c} = \frac{b_{y}}{b_{x} - c} ,\)

vậy hệ số góc của \(A H\)\(- \frac{1}{m_{B C}} = - \frac{b_{x} - c}{b_{y}}\). Do \(A H\) đi qua \(A \left(\right. 0 , 0 \left.\right)\), phương trình là

\(y = - \frac{b_{x} - c}{b_{y}} \textrm{ } x .\)

Giao \(O\) của \(B N\) ( \(x = b_{x}\) ) với \(A H\) có toạ độ

\(O \left(\right. b_{x} , \textrm{ }\textrm{ } y_{O} \left.\right) , y_{O} = - \frac{b_{x} - c}{b_{y}} \cdot b_{x} = - \frac{b_{x} \left(\right. b_{x} - c \left.\right)}{b_{y}} .\)


a) \(A M B N\) là hình gì? (chứng minh)

Ta có \(B M \parallel A C\) (vì đường qua \(B\) đã cho song song \(A C\)), và \(N\) nằm trên \(A C\), nên \(B M \parallel A N\).
Mặt khác \(A M\) vuông góc với \(A C\) (vì đường \(a\) qua \(A\) vuông góc với \(A C\)), nên \(A M \bot A N\). Từ đó \(A M \bot B M\).

Vì một cặp cạnh đối (AN và BM) song song nên \(A M B N\)hình thang. Do có \(A M \bot A N\) (tức một góc vuông), nên \(A M B N\)hình thang vuông.


b) Chứng minh \(C O \bot A B\)

Tính vector:

\(\overset{\rightarrow}{C O} = \left(\right. b_{x} - c , \textrm{ }\textrm{ } y_{O} \left.\right) = \left(\right. b_{x} - c , \textrm{ }\textrm{ } - \frac{b_{x} \left(\right. b_{x} - c \left.\right)}{b_{y}} \left.\right) , \overset{\rightarrow}{A B} = \left(\right. b_{x} , \textrm{ }\textrm{ } b_{y} \left.\right) .\)

Tích vô hướng của hai vector này là

\(\overset{\rightarrow}{C O} \cdot \overset{\rightarrow}{A B} = \left(\right. b_{x} - c \left.\right) \cdot b_{x} + \left(\right. - \frac{b_{x} \left(\right. b_{x} - c \left.\right)}{b_{y}} \left.\right) \cdot b_{y} = b_{x} \left(\right. b_{x} - c \left.\right) - b_{x} \left(\right. b_{x} - c \left.\right) = 0.\)

Tích vô hướng bằng \(0\) nên \(\overset{\rightarrow}{C O} \bot \overset{\rightarrow}{A B}\). Do đó \(C O \bot A B\).


Kết luận:
a) Tứ giác \(A M B N\)hình thang vuông.
b) \(C O\) vuông góc với \(A B\).

ask chatjpt

11 tháng 12 2022

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC và MN=1/2BC

=>ND//BC 

Xét tứ giác BDNC có

BD//NC

DN//BC

DO đó; BDNC là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là trung tuyến

nên HM=AM(1)

Ta có: ΔAHC vuông tại H

mà HN là trung tuyến

nên HN=AN(2)

Từ (1) và (2) suy ra MN là trung trực của AH

=>DN là trung trực của AH

=>DA=DH

mà DA=NB

nên DH=NB

Xét tứ giác DBHN có

DN//BH

DH=NB

DO đó: DBHN là hình thang cân

a: Xét tứ giác AHCN có 

M là trung điểm của AC

M là trung điểm của HN

Do đó: AHCN là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCN là hình chữ nhật

Suy ra: AC=HN

b: Xét ΔABC có 

H là trung điểm của BC

O là trung điểm của AB

Do đó;HO là đường trung bình

=>HO//AC và HO=AC/2

=>HO=AM và HO//AM

=>AOHM là hình bình hành

mà AO=AM

nên AOHM là hình thoi

13 tháng 4 2019

a. Xét  AFC và  AEB có:

\(\widehat{BAC}\) chung

\(\widehat{AFC}=\widehat{AEB}=90^0\)

 AFC đồng dạng với  AEB(g.g)

⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)

 \(AB.AF=AE.AC\)

\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)

Xét  AEF và  ABC có :

\(\widehat{BAC}\) chung

\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)

 AEF đồng dạng với  ABC (c.g.c)

Mấy câu kia bạn tự làm nốt đi nhá.

25 tháng 12 2016

A B C I M N D K a , Tứ giác ANMI có : góc MAN = góc ANI = góc AMI = 90o nên là hình chữ nhật .

→ AI = MN

b, ΔABC vuông tại A có đường trung tuyến AI ứng với cạnh huyền nên :

AI = IC

→ ΔAIC cân tại I

→ Góc IAN = góc ICN

Xét ΔAIN và ΔCIN có :

Góc INA = Góc INC = 90o

AI = IC

Góc IAN = góc ICN

→ Δ AIN = Δ CIN ( cạnh huyền - góc nhọn )

→ AN = NC

Ta có : IN = ND

AN = NC

→ Tứ giác AICD là hình bình hành mà có hai đường chéo ID và AC vuông góc với nhau nên là hinhg thoi .