Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nhé!
+) Chứng minh : tam giác ADB đồng dạng với tam giác ABF (g - g)
- Nối O với F. Kẻ OH | BF.
Tam giác OBF cân tại O có OH là đường cao nên đồng thời là đường phân giác => góc BOH = góc BOF/2
Mặt khác, góc BOH = ABF (cùng phụ với góc OBF)
=> góc ABF = góc BOF/2 (*)
- Ta có: góc BDO + DBO = BOC (tính chất góc ngoài tam giác) => 2.BDO = BOC => góc BDO = góc BOC/2
Lại có: góc FDO + DFO = FOC (t/c góc ngoài tam giác) => 2.góc FDO = FOC => góc FDO = góc FOC/ 2
=> góc BDO - FDO = góc BOC /2 - góc FOC/2 = góc BOF/2
=> góc BDF = góc BOF/2 (**)
Từ (*)(**) => góc ABF = BDF mà góc FAB chung
=> Tam giác ADB đồng dạng với ABF (g- g) => \(\frac{AD}{AB}=\frac{AB}{AF}\) => AD.AF = AB2
+ Theo ý a => AI.AO = AD.AF => \(\frac{AI}{AD}=\frac{AF}{AO}\) Lại có góc OAD chung
=> Tam giác AFI đồng dạng với tam giác AOD (c - g- c)
=> góc AIF = ADO ( 2 góc tương ứng)

c. Bạn C/m Tam Giác HOF- Tam giác KOA đồng dạng
=>OH/OK=OF/OA
=>OK.OF= OH.OA=OB^2=OD^2
=>OK/OD=OD/OF
=> Tam giác ODK và Tam giác OFD đồng dạng
=>Tam giác ODF vuông tại D
=>FD la tiếp tuyến của (O) (đpcm)
d. EI=BI=IA (IE la trung tuyến của tam giác vuông ABE)
=>góc IEB=góc IBE; Cmtt ta có góc FDE = góc FED
mà (góc IBE+ góc FDE)= 90 nên (góc IEB+góc FED)=90
=> F,E,I thẳng hàng
Ta có BINF là hình bình hành nên FN=BI=IA => IANF la hbh
=> AN=IF=IE+EF=IB+DF=FN+DF=DN (đpcm)
a: Xét tứ giác OBAC có \(\hat{OBA}+\hat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp đường tròn đường kính OA
=>O,B,A,C cùng thuộc đường tròn đường kính OA
ta có: OI+IA=OA
=>IA=OA-OI=2R-R=R
=>OI=IA
=>I là trung điểm của OA
=>Tâm của đường tròn chứa bốn điểm O,A,B,C là I
b:
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
ta có; OK⊥OB
OB⊥BA
Do đó: OK//BA
=>\(\hat{KOA}=\hat{BAO}\) (hai góc so le trong)
mà \(\hat{BAO}=\hat{KAO}\) (AO là phân giác của góc BAC)
nên \(\hat{KOA}=\hat{KAO}\)
=>ΔKOA cân tại K
c: ΔKOA cân tại K
mà KI là đường trung tuyến
nên KI⊥OA tại I
=>KI⊥OI tại I
=>KI là tiếp tuyến của (O)