Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án D
A={0;1;2;3;4;5;6;7;8;9}
Các tập con có A có hai phần tử mà có chứa chữ số 0 là:
{0;1},{0;2},{0;3},{0;4},{0;5},{0;6},{0;7},{0;8},{0;9}
Vậy có 9 tập con thỏa mãn bài toán.

a) Số 24 có các ước là: \( - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24.\) Do đó \(A = \{ - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24\} \), \(n\;(A) = 16.\)
b) Số 1113305 gồm các chữ số: 1;3;0;5. Do đó \(B = \{ 1;3;0;5\} \), \(n\;(B) = 4.\)
c) Các số tự nhiên là bội của 5 và không vượt quá 30 là: 0; 5; 10; 15; 20; 25; 30. Do đó \(C = \{ 0;5;10;15;20;25;30\} \), \(n\,(C) = 7.\)
d) Phương trình \({x^2} - 2x + 3 = 0\) vô nghiệm, do đó \(D = \emptyset \), \(n\,(D) = 0.\)

Câu 1:
A={1;3;5;7;9;...;19;21;23}
A={x=2k+1;0<=k<=11}
Câu 4:
a: M={x=5k; 0<=k<5}
b: P={x=k2;1<=k<=9}

Nếu \(a\), \(b\) chẵn thì \(a^{2} + b^{2}\) là hợp số. Do đó nếu tập con \(X\) của \(A\) có hai phần tử phân biệt \(a\), \(b\) mà \(a^{2} + b^{2}\) là một số nguyên tố thì \(X\) không thể chỉ chứa các số chẵn.
Suy ra \(k = 9\).
Ta chứng tỏ \(k = 9\) là giá trị nhỏ nhất cần tìm. Điều đó có nghĩa là với mọi tập con \(X\) gồm \(9\) phần tử bất kì của \(A\) luôn tồn tại hai phần tử phân biệt \(a\), \(b\) mà \(a^{2} + b^{2}\) là một số nguyên tố.
Để chứng minh khẳng định trên ta chia tập \(A\) thành các cặp hai phần tử phân biệt \(a\), \(b\) mà \(a^{2} + b^{2}\) là một số nguyên tố, ta có tất cả \(8\) cặp \(\left{\right. 1 ; 4 \left.\right}\), \(\left{\right. 2 ; 3 \left.\right}\), \(\left{\right. 5 ; 8 \left.\right}\), \(\left{\right. 6 ; 11 \left.\right}\), \(\left{\right. 7 ; 10 \left.\right}\), \(\left{\right. 9 ; 16 \left.\right}\), \(\left{\right. 12 ; 13 \left.\right}\), \(\left{\right. 14 ; 15 \left.\right}\). Theo nguyên lí Dirichlet thì \(9\) phần tử của \(X\) có hai phần tử cùng thuộc một cặp và ta có điều phải chứng minh.

Tập hợp C rỗng vì \(x^2+7x+12=0\Leftrightarrow x\in\left\{-3;-4\right\}\notin N\)
\(a,\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\}\\ b,\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{1;2;3\right\}\)
\(X=\left\{1;3\right\}\\ X=\left\{1;2;3\right\}\\ X=\left\{1;3;4\right\}\\ X=\left\{1;3;5\right\}\\ X=\left\{1;2;3;4\right\}\\ X=\left\{1;2;3;5\right\}\\ X=\left\{1;3;4;5\right\}\\ X=\left\{1;2;3;4;5\right\}\)

Phương trình hoành độ giao điểm của (P) và Ox: x 2 - 4 x + m = 0 1
Để (P) cắt Ox tại hai điểm phân biệt thì (1) có hai nghiệm phân biệt x 1 , x 2
⇔ Δ ' > 0 a ≠ 0 ⇔ 4 − m > 0 1 ≠ 0 ⇔ m < 4
Giả sử A x 1 ; 0 , B x 2 ; 0 và x 1 + x 2 = 4 , x 1 x 2 = m
Ta có: O A = O B ⇔ x 1 = 3 x 2 ⇔ x 1 = 3 x 2 x 1 = − 3 x 2
Trường hợp 1: x 1 = 3 x 2 ⇒ x 1 = 3 x 2 = 1 ⇒ m = 3 (thỏa mãn)
Trường hợp 2: x 1 = - 3 x 2 ⇒ x 1 = 6 x 2 = − 2 ⇒ m = − 12 (thỏa mãn)
Vậy S = −12 + 3 = −9.
Đáp án cần chọn là: D