Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số tập con của A: \(2^7\)
Số tập con có ít hơn 3 phần tử của A gồm: rỗng, 1 phần tử, 2 phần tử
Có: \(1+C_7^1+C_7^2=29\) tập như vậy
Vậy có \(2^7-29=99\) tập thỏa mãn yêu cầu đề bài

1/ X đồng thời là con của A và B <=> Trong X phải chứa các phần tử là 2;3;5
Nghĩa là đi tìm số tập hợp con của {2;3;5}
=> 23= 8 (tập con) (cái này là công thức đc áp dụng luôn còn nếu giáo viên bạn bắt CM thì lên google ask)
2/ Phần tử thứ nhất có 5 cách chọn
Phần tử thứ hai có 4 cách chọn
=> Tổng số cách chọn là: 5.4= 20(cách chọn)
Nhưng do mỗi phần tử đc tính 2 lần
=> số hoán vị= 2!= 2
=> số tập con là: 20/2 =10 (tập)
3/ ko chắc về cách lm nên out =))
Tìm số tập con chứa {1;2} của {1;2;3;4;5} là được

Gọi số phần tử của các tập A; B; C lần lượt là a;b;c
\(\Rightarrow\) Số tập con của chúng lần lượt là \(2^a;2^b;2^c\)
Ta có: \(2^b-2^c=15\)
\(\Rightarrow2^c\left(2^{b-c}-1\right)=15\)
\(\Rightarrow15⋮2^c\Rightarrow2^c=1\Rightarrow c=0\)
\(\Rightarrow2^b=16\Rightarrow b=4\)
\(\Rightarrow a=2b=8\)
\(\Rightarrow x=2^8-2^4=240\)

Do \(A\) là tập hợp có \(6\) phần tử nên số tập hợp con khác rỗng và khác \(A\) của tập hợp \(A\) là: \(2^{6} - 2 = 62\) (tập hợp con).
Xét tập hợp \(X\) là tập con bất kì trong \(62\) tập hợp con trên và \(T \left(\right. X \left.\right)\) là tổng các phần tử của \(X\).
Tập hợp \(X\) có nhiều nhất \(5\) phần tử thuộc tập hợp \(\left{\right. 0 ; 1 ; 2 ; . . . ; 14 \left.\right}\) nên ta có:
\(0 \leq T \left(\right. X \left.\right) \leq 10 + 11 + 12 + 13 + 14 = 60\).
Như vậy với \(62\) tập hợp con của \(A\) như trên thì tồn tại \(62\) tổng không vượt quá \(60\).
Theo nguyên lí Dirichlet thì tồn tại hai tổng có giá trị bằng nhau. Điều đó chứng tỏ tồn tại hai tập hợp con \(B_{1}\), \(B_{2}\) của tập hợp \(A\) có tổng các phần tử của chúng bằng nhau.

Câu 1:
A={1;3;5;7;9;...;19;21;23}
A={x=2k+1;0<=k<=11}
Câu 4:
a: M={x=5k; 0<=k<5}
b: P={x=k2;1<=k<=9}

a/
\(\Leftrightarrow2m+3\ge m+1\Leftrightarrow m\ge-2\)
b/
Tổng 3 phần tử chẵn \(\Rightarrow\) có các trường hợp:
- Cả 3 phần tử đều chẵn: có đúng 1 tập \(\left\{2;4;6\right\}\)
- 2 phần tử lẻ và 1 phần tử chẵn: chọn 2 phần tử lẻ từ 3 phần tử lẻ có 3 cách, kết hợp với 1 trong 3 phần tử chẵn \(\Rightarrow3.3=9\) tập
Vậy có 10 tập thỏa mãn

1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử
Số tập con có 2 phần tử của M là: \(C^2_5=10\)