Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E K 1 2 1 2
Ta có : \(\widehat{A_1}=\widehat{A_2}\)( do \(AD\)là phân giác )
\(\widehat{K_1}=\widehat{K_2}\)( đối đỉnh )
Vì \(AD//KM\Rightarrow\widehat{A_2}=\widehat{K_1}\left(soletrong\right)\Rightarrow\widehat{A_1}=\widehat{K_1}\)
Mà \(\widehat{AEK}=\widehat{A_1}\)( cùng bù \(\widehat{DAE}\))
\(\Rightarrow\widehat{AEK}=\widehat{K_1}\Rightarrow\Delta AEK\)cân tại \(K\)
\(\Rightarrow AE=AK\)

Sửa đề: Qua M, kẻ đường thẳng song song với AD cắt AB,AC lần lượt tại K và E
a: Xét ΔOAD và ΔOMK có
\(\hat{OAD}=\hat{OMK}\) (hai góc so le trong, AD//MK)
\(\hat{AOD}=\hat{MOK}\) (hai góc đối đỉnh)
Do đó ΔOAD~ΔOMK
=>\(\frac{OA}{OM}=\frac{OD}{OK}\)
=>\(OA\cdot OK=OD\cdot OM\)
b: Xét ΔABC có AD là phân giác
nên \(\frac{DB}{AB}=\frac{DC}{AC}\)
=>\(\frac{DB}{5}=\frac{DC}{10}\)
=>\(\frac{DB}{1}=\frac{DC}{2}\)
mà DB+DC=BC=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{DB}{1}=\frac{DC}{2}=\frac{DB+DC}{1+2}=\frac{12}{3}=4\)
=>\(DB=4\cdot1=4\)
c: Ta có: AD//MK
=>\(\hat{BAD}=\hat{AKE}\) (hai góc đồng vị) và \(\hat{DAC}=\hat{AEK}\) (hai góc so le trong)
mà \(\hat{BAD}=\hat{DAC}\) (AD là phân giác của góc BAC)
nên \(\hat{AKE}=\hat{AEK}\)
=>AE=AK
Xét ΔADC có EM//AD
nên \(\frac{AE}{EC}=\frac{DM}{MC}\)
=>\(\frac{AE+EC}{EC}=\frac{DM+MC}{MC}\)
=>\(\frac{AC}{CE}=\frac{DC}{MC}\)
=>\(\frac{AC}{DC}=\frac{CE}{MC}\)
mà \(\frac{AC}{DC}=\frac{AB}{DB}\)
nên \(\frac{AB}{DB}=\frac{CE}{MC}\)
=>\(\frac{AB}{CE}=\frac{DB}{MC}\)
d: Xét ΔBKM có AD//MK
nên \(\frac{BD}{BM}=\frac{BA}{BK}\)
=>\(\frac{BA}{BK}=\frac{BD}{MC}\)
=>\(\frac{BA}{BK}=\frac{BA}{CE}\)
=>BK=CE

a) \(\hept{\begin{cases}\widehat{K}=\widehat{BAD}\\\widehat{AEK}=\widehat{DAE}\end{cases}}\)Mà \(\widehat{BAD}=\widehat{DAE}\)(AD là tia phân giác) => \(\widehat{K}=\widehat{AEK}\Rightarrow\Delta AEK\)cân tại A => AE=AK (đpcm)
b) Vì MK // AD nên \(\frac{AK}{BK}=\frac{DM}{BM}\Rightarrow\frac{AK}{DM}=\frac{BK}{BM}\left(1\right)\)
Vì AD // EM nên \(\frac{CE}{AE}=\frac{CM}{DM}\Rightarrow\frac{CE}{CM}=\frac{AE}{DM}\left(2\right)\)
Vì AK=AE (cmt câu a) nên \(\frac{AK}{DM}=\frac{AE}{DM}\left(3\right)\)
Từ (1)(2) và (3) => \(\frac{BK}{BM}=\frac{CE}{CM}\)
Mà BM=CM (M là trung điểm BC) => BK=CE (đpcm)