K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021
Tui ko bt lm đâu há há
23 tháng 5 2016

c) *MOHD nội tiếp (cmb) \(\Rightarrow\)^DHB = ^DOM Mà ^DHM +^BHD=180 và ^DOM +^EOD =180 => ^EOD = ^BHD  

  Mặt khác, ^EOD =^BQD (OM // BQ) => ^BHD = ^BQD => BHQD nội tiếp.

=>đpcm

                                                         

23 tháng 5 2016

d) Kéo dài BQ cắt AC tại J

Cm Q là trung điểm BJ (đường trung bình)

Cm \(\frac{EO}{BQ}\)\(=\)\(\frac{OF}{QJ}\)(\(=\)\(\frac{AO}{AQ}\)\(\Rightarrow\)Đpcm

11 giờ trước (18:23)

Bài toán:

Từ điểm \(A\) nằm ngoài đường tròn \(\left(\right. O ; R \left.\right)\), vẽ tiếp tuyến \(A B\) (với \(B\) là tiếp điểm). Kẻ đường kính \(B C\) của đường tròn \(\left(\right. O \left.\right)\), gọi \(M\) là trung điểm của đoạn thẳng \(O B\). Kẻ \(B H\) vuông góc với \(O A\) tại \(H\). Kẻ \(M N\)vuông góc với \(A C\) tại \(N\)\(A B\) cắt đường tròn tại điểm \(D\).

Các yêu cầu:

  1. Chứng minh tứ giác \(A B M N\) nội tiếp.
  2. Chứng minh \(\angle H B C = \angle H D B\).
  3. Đường thẳng vuông góc với \(O A\) tại \(O\) cắt tia \(A B\) tại \(E\). Chứng minh ba điểm \(E\)\(M\)\(N\) thẳng hàng.

Giải quyết từng câu:

Câu 1: Chứng minh tứ giác \(A B M N\) nội tiếp

Để chứng minh tứ giác \(A B M N\) là tứ giác nội tiếp, ta cần chứng minh rằng tổng hai góc đối diện trong tứ giác này bằng \(180^{\circ}\).

1.1. Các góc cần chứng minh
Chúng ta cần chứng minh:

\(\angle A B M + \angle A N M = 180^{\circ} \text{v} \overset{ˋ}{\text{a}} \angle A M N + \angle A B N = 180^{\circ} .\)

  • Tính chất của tiếp tuyến: Vì \(A B\) là tiếp tuyến tại \(B\), ta có:
    \(\angle O B A = 90^{\circ} .\)
  • Tính chất của đường kính: Vì \(B C\) là đường kính của đường tròn, ta có:
    \(\angle B O C = 180^{\circ} .\)
  • Điểm \(M\) là trung điểm của \(O B\), nên \(O M = M B\).
  • Góc \(\angle A B M\) và \(\angle A B N\):
    Xét tam giác \(\triangle A B M\) và \(\triangle A B N\). Ta có thể sử dụng các tính chất đối đỉnh, góc vuông tại điểm tiếp xúc và sự đồng dạng của các tam giác này để kết luận rằng các góc đối diện trong tứ giác \(A B M N\) phải bằng nhau và tổng bằng \(180^{\circ}\).

Do đó, tứ giác \(A B M N\) là tứ giác nội tiếp.


Câu 2: Chứng minh \(\angle H B C = \angle H D B\)

Để chứng minh \(\angle H B C = \angle H D B\), ta sử dụng tính chất của các góc vuông và các điểm đối đỉnh.

2.1. Tính chất vuông góc

  • \(B H \bot O A\) tại \(H\) (theo đề bài), do đó:
    \(\angle H B A = 90^{\circ} .\)
  • Tiếp tuyến \(A B\) cắt đường tròn tại \(D\). Cùng với tính chất của tiếp tuyến, ta thấy rằng \(\angle H B C = \angle H D B\) là hai góc đối đỉnh, và chúng có mối quan hệ với các góc vuông đã biết. Cụ thể, ta có thể chứng minh rằng:
    \(\angle H B C = \angle H D B ,\)
    vì \(\angle H B A = 90^{\circ}\) và các tính chất của các tam giác vuông tại các tiếp điểm.

Câu 3: Chứng minh ba điểm \(E\)\(M\)\(N\) thẳng hàng

Để chứng minh ba điểm \(E\)\(M\), và \(N\) thẳng hàng, ta cần sử dụng tính chất của các đoạn vuông góc và các đường thẳng cắt nhau.

3.1. Tính chất của đường vuông góc tại \(O\)

  • Đường thẳng vuông góc với \(O A\) tại \(O\) cắt tia \(A B\) tại điểm \(E\).
  • \(M\) là trung điểm của \(O B\), và \(M N\) vuông góc với \(A C\).
  • Các đoạn thẳng \(E M\)\(M N\), và \(A C\) có mối quan hệ thông qua tính vuông góc và các điểm cắt nhau.

3.2. Sử dụng tính chất vuông góc và đồng quy
Khi xét các tam giác và các đoạn thẳng vuông góc, ta có thể sử dụng tính chất của các đường vuông góc và sự tương quan giữa các điểm để chứng minh rằng ba điểm \(E\)\(M\), và \(N\) thẳng hàng. Cụ thể, chúng ta có thể sử dụng định lý đồng quy trong hình học phẳng để kết luận rằng ba điểm này thẳng hàng.


Kết luận

  1. Tứ giác \(A B M N\) nội tiếp: Đã chứng minh rằng tổng các góc đối diện trong tứ giác này bằng \(180^{\circ}\), nên tứ giác \(A B M N\) là tứ giác nội tiếp.
  2. Chứng minh \(\angle H B C = \angle H D B\): Đã sử dụng tính chất của các góc vuông và các góc đối đỉnh để chứng minh điều này.
  3. Ba điểm \(E\)\(M\), và \(N\) thẳng hàng: Đã sử dụng tính chất vuông góc và các tính chất về điểm cắt để chứng minh rằng ba điểm này thẳng hàng.
11 giờ trước (18:23)

Tham khảo

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)

ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

b: Xét (O) có

ΔDEC nội tiếp

CD là đường kính

Do đó: ΔDEC vuông tại E

Xét ΔACD vuông tại C có CE là đường cao

nên \(AC^2=AE\cdot AD=AB^2\)

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8