K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi giao điểm của BM với AC; CM với AD lần lượt là D và E

Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó;ΔEBC=ΔDCB

Suy ra: \(\widehat{MCB}=\widehat{MBC}\)

hay ΔMBC cân tại M

=>\(\widehat{MBC}=\dfrac{180^0-140^0}{2}=20^0\)

=>\(\widehat{ACB}=\widehat{ABC}=70^0\)

hay \(\widehat{BAC}=40^0\)

19 tháng 8 2017

A B C M

Th1: AB<AC (hình hơi lệch chuẩn chút :P)

giá sử đường thẳng qua đỉnh A chia tam giác ABC thành hai tam giác cân ABM cân tại A và ACM cân tại M

khi đó (ko viết mũ góc tự hiểu ha)

=> B=M

Lại có M=C+MAC=2C

=>B=2C, lại có A=75

=>B=70

C=35

T.tự Th AC<AB

còn AB=AC=>B=C=52,5

11 tháng 2 2018

Th1: AB<AC (hình hơi lệch chuẩn chút :P)
giá sử đường thẳng qua đỉnh A chia tam giác ABC thành hai tam giác cân ABM cân tại A và ACM cân tại M
khi đó (ko viết mũ góc tự hiểu ha)
=> B=M
Lại có M=C+MAC=2C
=>B=2C, lại có A=75
=>B=70
C=35
T.tự Th AC<AB
còn AB=AC=>B=C=52,5

Xét tam giác ABC có :

A + ABC + ACB = 180 *

=> ABC + ACB = 180* - a

Mà BC là phân giác ABC 

=> ABD = CBD = \(\frac{1}{2}ABC\)

Mà CE là phân giác ACB 

=> ACE = BCE = \(\frac{ACB}{2}\)

=> ECB + DBC = \(\frac{ACB+ABC}{2}\)\(\frac{180-a}{2}\)

Xét tam giác OBC có : 

OBC + OCB + BOC = 180* 

=> BOC = 180* - ( OBC + OCB)

=> BOC = 180* - \(\frac{180-a}{2}\)

=> BOC =\(\frac{a}{2}\)(dpcm)

16 tháng 8

Kết quả:

\(\angle C E D = \frac{\mid A - B \mid}{2} .\)

Giải nhanh: Gọi \(C = 180^{\circ} - A - B\). Vì \(C E\) là tia phân giác góc ngoài tại \(C\), nên nó tạo với \(C A\) một góc

\(\hat{\left(\right. C E , C A \left.\right)} = 90^{\circ} - \frac{C}{2} .\)

Qua \(E\) kẻ đường thẳng song song với \(C A\); đường này tạo với \(A B\) một góc bằng \(A\). Do đó góc giữa \(C E\)\(A B\) (chính là \(\angle C E D\)) bằng

\(\mid \textrm{ } A - \left(\right. 90^{\circ} - \frac{C}{2} \left.\right) \mid .\)

Thay \(C = 180^{\circ} - A - B\) vào, ta có \(90^{\circ} - \frac{C}{2} = \frac{A + B}{2}\). Suy ra

\(\angle C E D = \mid A - \frac{A + B}{2} \mid = \frac{\mid A - B \mid}{2} .\)

(Với quy ước lấy góc nhọn tại \(E\); nếu \(A \geq B\) thì \(\angle C E D = \frac{A - B}{2}\), còn nếu \(A < B\) thì \(\angle C E D = \frac{B - A}{2}\).)

Vì CD và CE là hai tia phân giác của hai góc kề bù

nên CD⊥CE

=>ΔDCE vuông tại C

Xét ΔADC có \(\hat{BDC}\) là góc ngoài tại đỉnh D

nên \(\hat{BDC}=\hat{DAC}+\hat{DCA}=\hat{BAC}+\frac12\cdot\hat{ACB}\)

\(=\hat{BAC}+\frac12\left(180^0-\hat{BAC}-\hat{ABC}\right)=90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\)

Xét ΔDCE vuông tại C có \(\hat{CDE}+\hat{CED}=90^0\)

=>\(\hat{CED}=90^0-\left(90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\right)=-\frac12\cdot\hat{BAC}+\frac12\cdot\hat{ABC}\)

9 tháng 12 2016

a) b) A B C B C A ABC cân tại A có C=B=50 ABC có A+B+C=180 A+50+50=180 A=80 ABC có A+B+C=180 70+2B=180 2B=180-70 2B=110 B=110:2 B=55 50 70

16 tháng 1 2018

chứng minh 3 tam giác bằng nhau là xong