K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

a) xét tam giác MHN và tam giác MHP có

         \(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)

         MN = MP ( tam giác MNP cân tại M)

         MH chung

=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)

b) vì tam giác MHN = tam giác MHP (câu a)

=> \(\widehat{M1}\)\(\widehat{M2}\)(2 góc tương ứng)

=> MH là tia phân giác của \(\widehat{NMP}\)

9 tháng 4 2017

bạn tự vẽ hình nhé

a.

vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)

Xét tam giác MHN và tam giác MHP

có: MN-MP(CMT)

 \(\widehat{N}\)=\(\widehat{P}\)(CMT)

MH là cạnh chung

\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)

=> Tam giác MHN= Tam giác MHP(ch-gn)

=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG)          (1)

và NH=PH( 2 cạnh tương ứng)

mà H THUỘC NP=> NH=PH=1/2NP                               (3)

b. Vì H năm giữa N,P

=> MH nằm giữa MN và MP                                           (2)

Từ (1) (2)=> MH là tia phân giác của góc NMP

c. Từ (3)=> NH=PH=1/2.12=6(cm)

Xét tam giác MNH có Góc H=90 độ

=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)

hay \(10^2=6^2+MH^2\)

=>\(MH^2=10^2-6^2\)

\(MH^2=64\)

=>MH=8(cm)

a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có

MN=MP

MH chung

=>ΔMHN=ΔMHP

b: ΔMHN=ΔMHP

=>HN=HP

=>H là trung điểm của NP

c: ΔMNH=ΔMPH

=>góc NMH=góc PMH

=>MH là phân giác của góc NMP

 

18 tháng 5

Giả thiết chung:

  • Tam giác MNP cân tại M\(M N = M P\)
  • \(M H \bot N P\), H ∈ NP ⇒ MH là đường cao từ M xuống đáy NP
  • \(H I \bot M N\) tại I, và \(H K \bot M P\) tại K.

🔷 Câu a): Chứng minh \(\triangle M H N = \triangle M H P\)

Xét hai tam giác vuông MHN và MHP:

Ta có:

  • \(M H\) chung (cạnh huyền trong hai tam giác vuông)
  • \(\angle M H N = \angle M H P = 90^{\circ}\) (do \(M H \bot N P\))
  • \(M N = M P\) (do tam giác MNP cân tại M)

→ Hai tam giác vuông có:

  • Cạnh huyền bằng nhau: \(M N = M P\)
  • Cạnh góc vuông chung: \(M H\)

\(\triangle M H N = \triangle M H P\) (theo trường hợp c.g.c – cạnh huyền – góc vuông – cạnh góc vuông)

ĐPCM


🔷 Câu b): Từ điểm H kẻ \(H I \bot M N\), \(H K \bot M P\)

Đây là bước kẻ hình:

  • Gọi I là chân đường vuông góc từ H đến MN ⇒ \(H I \bot M N\)
  • Gọi K là chân đường vuông góc từ H đến MP ⇒ \(H K \bot M P\)

Không cần chứng minh, chỉ cần ghi thao tác kẻ hình:

Đã kẻ xong \(H I \bot M N\), \(H K \bot M P\).


🔷 Câu c): Chứng minh tam giác MIK là tam giác cân

Ta cần chứng minh: \(M I = M K\)

Ý tưởng:

Ta sẽ sử dụng tính chất đối xứng của tam giác cân và kết quả từ câu a.


Phân tích và chứng minh:

  • Từ câu a: \(\triangle M H N = \triangle M H P\)\(\angle M H N = \angle M H P\), và do đối xứng, HI = HK.
  • Trong hai tam giác vuông \(\triangle H I K\)\(\triangle H K I\), ta thấy:
    • \(H I = H K\) (do đối xứng)
    • \(\angle I H N = \angle K H P = 90^{\circ}\)
    • \(H\) là chung

⇒ Hai tam giác \(\triangle H M I\)\(\triangle H M K\) bằng nhau

⇒ Suy ra: \(M I = M K\)


Kết luận:

Tam giác \(M I K\)\(M I = M K\)là tam giác cân tại M

ĐPCM

13 tháng 4 2020

Bài 1 :

Vì mình kh pk CTV nên hình không lên đây được , bạn vào thống kê hỏi đáp của mình xem nhé

#hoc_tot#

:>>>

13 tháng 4 2020

Hình đó nha bạn

Vào TKHĐ của mình là thấy nhé

#hoc_tot#

:>>>