Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:
\(\cos\widehat{A}=\dfrac{3\sqrt{39}}{20}\)
\(\tan\widehat{A}=\dfrac{7}{20}:\dfrac{3\sqrt{39}}{20}=\dfrac{7}{3\sqrt{39}}=\dfrac{7\sqrt{39}}{117}\)
\(\cot\widehat{A}=\dfrac{3\sqrt{39}}{7}\)

2.cho tam giác ABC vuông tại A biết AB=12,BC=20 tính các tỉ số lượng giác của góc C

a: ΔMDN vuông tại D
=>\(MD^2+DN^2=MN^2\)
=>\(MN^2=6^2+8^2=36+64=100=10^2\)
=>MN=10(cm)
Xét ΔDNM vuông tại D có \(\sin DMN=\frac{DN}{MN}=\frac{6}{10}=\frac35\)
nên \(\hat{DMN}\) ≃36 độ 52p
b: Xét ΔMDN vuông tại D có DA là đường cao
nên \(MA\cdot MN=MD^2\left(1\right)\)
Xét ΔMDP vuông tại D có DB là đường cao
nên \(MB\cdot MP=MD^2\left(2\right)\)
Từ (1),(2) suy ra \(MA\cdot MN=MB\cdot MP\)
c: Xét ΔMIN vuông tại I và ΔMKP vuông tại K có
\(\hat{IMN}\) chung
Do đó: ΔMIN~ΔMKP
=>\(\frac{MI}{MK}=\frac{MN}{MP}\)
=>\(\frac{MI}{MN}=\frac{MK}{MP}\)
Xét ΔMIK và ΔMNP có
\(\frac{MI}{MN}=\frac{MK}{MP}\)
góc IMK chung
Do đó: ΔMIK~ΔMNP
=>\(\hat{MIK}=\hat{MNP}\left(3\right)\)
ta có: \(MA\cdot MN=MB\cdot MP\)
=>\(\frac{MA}{MP}=\frac{MB}{MN}\)
Xét ΔMAB và ΔMPN có
\(\frac{MA}{MP}=\frac{MB}{MN}\)
góc AMB chung
Do đó: ΔMAB~ΔMPN
=>\(\hat{MBA}=\hat{MNP}\left(4\right)\)
Từ (3),(4) suy ra \(\hat{MBA}=\hat{MIK}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên BA//KI

a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

Các tỉ số lượng giác của góc N nhé bạn :< , lúc nãy mình viết nhầm xD
Áp dụng định lí Pytago:
`NP^2=MN^2+MP^2`
`<=> MP=\sqrt(13^2-5^2)=12(cm)`
Các tỉ số lượng giác `\hatN` là:
`sinN=(MP)/(NP)=12/13`
`cosN=(MN)/(NP)=5/13`
`tanN=(MP)/(MN)=12/5`
`cotN=(MN)/(MP)=5/12`

Xét ΔMNP vuông tại M có
\(MN=NP\cdot\dfrac{1}{2}=5\cdot\dfrac{1}{2}=2.5\left(cm\right)\)
\(\Leftrightarrow MP=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

Bài 1:
a) Ta có:
\(tanB=\dfrac{AC}{AB}\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{2}\)
\(\Rightarrow AC=\dfrac{AB\cdot5}{2}=\dfrac{6\cdot5}{2}=15\)
b) Áp dụng Py-ta-go ta có:
\(BC^2=AB^2+AC^2=6^2+15^2=261\)
\(\Rightarrow BC=\sqrt{261}=3\sqrt{29}\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP^2=3^2-\left(\sqrt{5}\right)^2=4\)
hay MP=2cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MK là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MN^2=NK\cdot NP\\MK\cdot NP=MN\cdot MP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}KN=\dfrac{5}{9}\left(cm\right)\\MK=\dfrac{2\sqrt{5}}{3}\left(cm\right)\end{matrix}\right.\)
Xét ΔNMK vuông tại K có
\(\sin\widehat{NMK}=\dfrac{KN}{MN}=\dfrac{\sqrt{5}}{9}\)
\(\cos\widehat{NMK}=\dfrac{MK}{MN}=\dfrac{2}{3}\)
\(\tan\widehat{NMK}=\dfrac{KN}{KM}=\dfrac{\sqrt{5}}{6}\)
\(\cot\widehat{NMK}=\dfrac{KM}{KN}=\dfrac{6\sqrt{5}}{5}\)
\(\sin\widehat{P}=\cos\widehat{M}=\dfrac{4}{5}\)
\(\cos\widehat{P}=\sin\widehat{M}=\dfrac{3}{5}\)
\(\tan\widehat{P}=\cot\widehat{M}=\dfrac{4}{3}\)
\(\tan\widehat{M}=\cot\widehat{P}=\dfrac{3}{4}\)