Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả thiết chung:
- Tam giác MNP cân tại M ⇒ \(M N = M P\)
- \(M H \bot N P\), H ∈ NP ⇒ MH là đường cao từ M xuống đáy NP
- \(H I \bot M N\) tại I, và \(H K \bot M P\) tại K.
🔷 Câu a): Chứng minh \(\triangle M H N = \triangle M H P\)
Xét hai tam giác vuông MHN và MHP:
Ta có:
- \(M H\) chung (cạnh huyền trong hai tam giác vuông)
- \(\angle M H N = \angle M H P = 90^{\circ}\) (do \(M H \bot N P\))
- \(M N = M P\) (do tam giác MNP cân tại M)
→ Hai tam giác vuông có:
- Cạnh huyền bằng nhau: \(M N = M P\)
- Cạnh góc vuông chung: \(M H\)
⇒ \(\triangle M H N = \triangle M H P\) (theo trường hợp c.g.c – cạnh huyền – góc vuông – cạnh góc vuông)
✅ ĐPCM
🔷 Câu b): Từ điểm H kẻ \(H I \bot M N\), \(H K \bot M P\)
Đây là bước kẻ hình:
- Gọi I là chân đường vuông góc từ H đến MN ⇒ \(H I \bot M N\)
- Gọi K là chân đường vuông góc từ H đến MP ⇒ \(H K \bot M P\)
Không cần chứng minh, chỉ cần ghi thao tác kẻ hình:
✅ Đã kẻ xong \(H I \bot M N\), \(H K \bot M P\).
🔷 Câu c): Chứng minh tam giác MIK là tam giác cân
Ta cần chứng minh: \(M I = M K\)
Ý tưởng:
Ta sẽ sử dụng tính chất đối xứng của tam giác cân và kết quả từ câu a.
Phân tích và chứng minh:
- Từ câu a: \(\triangle M H N = \triangle M H P\) ⇒ \(\angle M H N = \angle M H P\), và do đối xứng, HI = HK.
- Trong hai tam giác vuông \(\triangle H I K\) và \(\triangle H K I\), ta thấy:
- \(H I = H K\) (do đối xứng)
- \(\angle I H N = \angle K H P = 90^{\circ}\)
- \(H\) là chung
⇒ Hai tam giác \(\triangle H M I\) và \(\triangle H M K\) bằng nhau
⇒ Suy ra: \(M I = M K\)
✅ Kết luận:
Tam giác \(M I K\) có \(M I = M K\) ⇒ là tam giác cân tại M
✅ ĐPCM

a) xét tam giác MHN và tam giác MHP có
\(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)
MN = MP ( tam giác MNP cân tại M)
MH chung
=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)
b) vì tam giác MHN = tam giác MHP (câu a)
=> \(\widehat{M1}\)= \(\widehat{M2}\)(2 góc tương ứng)
=> MH là tia phân giác của \(\widehat{NMP}\)
bạn tự vẽ hình nhé
a.
vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)
Xét tam giác MHN và tam giác MHP
có: MN-MP(CMT)
\(\widehat{N}\)=\(\widehat{P}\)(CMT)
MH là cạnh chung
\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)
=> Tam giác MHN= Tam giác MHP(ch-gn)
=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG) (1)
và NH=PH( 2 cạnh tương ứng)
mà H THUỘC NP=> NH=PH=1/2NP (3)
b. Vì H năm giữa N,P
=> MH nằm giữa MN và MP (2)
Từ (1) (2)=> MH là tia phân giác của góc NMP
c. Từ (3)=> NH=PH=1/2.12=6(cm)
Xét tam giác MNH có Góc H=90 độ
=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)
hay \(10^2=6^2+MH^2\)
=>\(MH^2=10^2-6^2\)
\(MH^2=64\)
=>MH=8(cm)

a: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
b: NH=PH=2cm
=>\(MH=\sqrt{5^2-2^2}=\sqrt{21}\simeq4,6\left(cm\right)\)
c: Xét ΔMNI và ΔMPI có
MN=MP
góc NMI=góc PMI
MI chung
=>ΔMNI=ΔMPI
a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có
MN=MP
MH chung
=>ΔMHN=ΔMHP
b: ΔMHN=ΔMHP
=>HN=HP
=>H là trung điểm của NP
c: ΔMNH=ΔMPH
=>góc NMH=góc PMH
=>MH là phân giác của góc NMP