K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 8 2020

Hình vẽ:

Violympic toán 9

AH
Akai Haruma
Giáo viên
22 tháng 8 2020

Lời giải:

a) Ta có:

$\frac{S_{AMN}}{S_{AMC}}=\frac{AN}{AC}$

$\frac{S_{AMC}}{S_{ABC}}=\frac{AM}{AB}$

Nhân theo vế thu được:

$\frac{S_{AMN}}{S_{ABC}}=\frac{AN.AM}{AC.AB}$

b) 

Vì $AB=AC, AM=CN\Rightarrow AB-AM=AC-CN$ hay $BM=AN$

Do đó:

$\frac{S_{AMN}}{S_{ABC}}=\frac{AM.BM}{AB.AC}=\frac{AM.BM}{AB^2}$

Áp dụng BĐT AM-GM:
$AM.BM\leq \left(\frac{AM+BM}{2}\right)^2=\frac{AB^2}{4}$

$\Rightarrow \frac{S_{AMN}}{S_{ABC}}\leq \frac{AB^2}{4.AB^2}=\frac{1}{4}$

$\Rightarrow S_{AMN}\leq \frac{S_{ABC}}{4}$

Vậy $S_{AMN}$ max bằng $\frac{S_{ABC}}{4}$ khi $AM=BM$ hay $M$ là trung điểm của $AB$, kéo theo $N$ là trung điểm $AC$

Vậy......

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải:

a)

Xét tam giác $MAH$ và $HAB$ có:

\(\left\{\begin{matrix} \widehat{AMH}=\widehat{AHB}=90^0\\ \text{góc A chung}\end{matrix}\right.\Rightarrow \triangle MAH\sim \triangle HAB(g.g)\)

Do đó: \(\frac{MA}{HA}=\frac{AH}{AB}\Rightarrow MA.AB=HA^2(1)\)

Hoàn toàn tương tự:

\(\triangle ANH\sim \triangle AHC\Rightarrow \frac{AN}{AH}=\frac{AH}{AC}\Rightarrow AN.AC=AH^2(2)\)

\(\Rightarrow AN.AC=AM.AB\) (đpcm)

b)

Với tam giác $ABC$ nhọn bất kỳ, ta có công thức sau:

\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)

Chứng minh: Kẻ \(BH\perp AC\). Khi đó \(S_{ABC}=\frac{BH.AC}{2}\)

Mà: \(\frac{BH}{AB}=\sin A\Rightarrow BH=AB.\sin A\)

\(\Rightarrow S_{ABC}=\frac{BH.AC}{2}=\frac{AB.\sin A.AC}{2}\) (đpcm)

Áp dụng công thức trên vào bài toán:

\(S_{AMN}=\frac{1}{2}.AM.AN\sin A\)

\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)

\(\Rightarrow \frac{S_{AMN}}{S_{ABC}}=\frac{AM.AN}{AB.AC}=\frac{AM.AB.AN.AC}{AB^2.AC^2}=\frac{AH^2.AH^2}{AB^2.AC^2}\) (theo phần a)

\(=\left(\frac{AH}{AB}\right)^2\left(\frac{AH}{AC}\right)^2=\sin ^2B.\sin ^2C\) (đpcm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Hình vẽ:
Hệ thức lượng trong tam giác vuông