Cho tam giác ABC,lấy điểm D thuộc tia đối của tia AB,điểm E thuộc tia đối của tia...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

a: Xét ΔABC và ΔADE có

AB=AD

\(\widehat{BAC}=\widehat{DAE}\)(hai góc đối đỉnh)

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAHB vuông tại H và ΔAKD vuông tại K có

AB=AD

\(\widehat{ABH}=\widehat{ADK}\)(ΔABC=ΔADE)

Do đó: ΔAHB=ΔAKD

=>BH=DK

c: Ta có: ΔAHB=ΔAKD

=>\(\widehat{HAB}=\widehat{DAK}\)

mà \(\widehat{HAB}+\widehat{HAD}=180^0\)(hai góc kề bù)

nên \(\widehat{DAK}+\widehat{DAH}=180^0\)

=>K,A,H thẳng hàng

12 giờ trước (15:41)

a) Tính số đo các góc BOD, DOE, COE

Dựa vào các số đo đã cho:

  • ∠BOC = 42°
  • ∠AOD = 97°
  • ∠AOE = 56°

Giả sử các tia nằm trên cùng một mặt phẳng và theo thứ tự: B → O → C → D → E → A

Tính từng góc:

  • ∠BOD = ∠AOD − ∠BOC = 97° − 42° = 55°
  • ∠DOE = ∠AOE − ∠AOD = 56° − 97° = −41° → không hợp lý
    → Vậy ta lấy: ∠DOE = ∠AOD − ∠AOE = 97° − 56° = 41°
  • ∠COE = ∠BOD + ∠DOE = 55° + 41° = 96°


  • b) Tia OD có phải là phân giác của góc COE không?
  • Phân giác là tia chia góc thành hai phần bằng nhau.
  • ∠COE = 96°, mà ∠BOD = 55°, ∠DOE = 41°
  • 55° ≠ 41°, nên tia OD không phải là phân giác của ∠COE
3 tháng 3 2018

a)\(\Delta ABH\) vuông tại H có:

BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)

=> BH=5 cm

BC=BH+HC=5+16=21 cm

\(\Delta AHC\) vuông tại H có:

AH2 + HC2 =AC2 ( đl Pytago)

=> AC2 =122 + 162 =20 cm

b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL  Pytago)

=> BH2 =AB2 - AH2 =132 - 122 =25

=> BH=5 cm

BC= BH+HC=5+16=21 cm

\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)

=> AC2 = 122 + 162 =400

=> AC= 20 cm 

30 tháng 12 2020

Tự vẽ hình nhé

a) Vì AB = AC => tam giác ABC cân tại A 

Xét tam giác ABM và ACM có \(\hept{\begin{cases}AB=AC\\AM\\BM=MC\end{cases}chung}\)

=>\(\Delta ABM=\Delta ACM\)( c.c.c) ( đpcm)

b) Theo a) có \(\Delta ABM=\Delta ACM\) =.> \(\widehat{BAM}=\widehat{CAM}\)

=> AK là tia phân giác ....

c)Xét tam giác BEC và tam giác CEB có

BD = CE ( vì AB = AC mà AD=AE)

góc ABC=góc ACB (tam giác cân)

BC chung 

=> tam giác ....= tam giác....(c.g.c)

=> góc EBC = góc DCB

=> tam giác BCK cân tại K 

=> BK=KC 

Xét tam giác AKB và tam giác AKC có

AB=AC

AK chung

BK=KC

=> tam giác ...=tam giác...(C.C.C)

=> \(\widehat{BAK}=\widehat{CAK}\)

=> AK  là tia phân giác góc ABC\(\)(1)

Mà AM là phân giác góc ABC(2)

Từ (1) và (2) => A,M,K thẳng hàng

6 tháng 1 2015

xét 2 tam giác BAD và tam giác BHD (góc A= góc H= 90 độ)

ta có: cạnh huyền BD chung

         góc ABD= góc HBD (vì BD  là phân giác góc B)

=>tam giác BAD=tam giác BHD(cạnh huyền-góc nhọn)

<=>BA=BH (2 cạnh tương ứng)

1 tháng 8 2016

Xét tam giác BAD và tam giác BHD có:

               góc ABD = gics HBD (phân giác goác ABC)

               BD: cạnh chung

               góc A = góc H ( =90 độ)

=> tam giác BAD = tam giác BHD ( cạnh huyền-góc nhọn)

=> BA = BH ( 2 cạnh tương ứng )

28 tháng 11 2017

AE giúp mình Với

28 tháng 11 2017

a) Xét tam giác ABC:  BAC+ABC+ACB=180\(\Rightarrow\)90+50+ACB=180

\(\Rightarrow\)ACB=180-140=40 độ

Xét tam giác ABM và tam giác HBM có:

BM chung;  ABM = HBM (gt)  ;   AB=HB(gt)

\(\Rightarrow\)Tam giác ABM = tam giác HBM (c.g.c)

b) Theo câu a)tam giác ABM =tam giác HBM (c.g.c) nên BAM=BHM=90 

Hay HM vuông góc với BC

c) ta có HN vuông góc với AB ; AC vuông góc với AB nên Hn song song với Ac